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Chapter 1

Introduction

An optimization problem is to find the best decisions among a set of alternatives. There are con-
straints that determine which decisions are feasible, and there is a metric that determines the value
of the decisions. This type of problem arises in many business settings. For example, in the trans-
portation sector, a shipping company wants to deliver packages as efficiently as possible within the
constraints of its budget, assets, and workforce.

An optimization model is a mathematical description of an optimization problem. It has three
parts: decision variables, constraints, and an objective function. Decision variables are placeholders
for assignments of values that represent decisions. A constraint is a function that takes an assignment
of values to the decision variables as input and outputs whether or not the assignment is feasible.
An objective function takes an assignment of values to the decision variables as input and outputs
a real number that represents its value.

An optimization algorithm is a method to solve an optimization model. There are exact opti-
mization algorithms and heuristic optimization algorithms. An exact algorithm aims not only to
find the best solution, but also to prove that no better solution exists. A heuristic algorithm aims
to find a good solution to the model without proving how good it is. An optimization algorithm
is usually designed to solve a particular form of an optimization model. For example, an opti-
mization algorithm might solve optimization models that have linear objective functions and linear
constraints.

1.1 Motivation
The purpose of this work is to present a dissertation on column elimination, which is a novel frame-
work for modeling and exactly solving a particular form of optimization problem. The optimization
problem is described by sequences of decisions: Given a set of feasible sequences of decisions, choose
the best subset of these feasible sequences that collectively meet some constraints. For example,
consider a delivery company with a fleet of vehicles. Assume that all delivery vehicles start at a
common depot where the packages are stored. The set of feasible sequences of decisions is equiva-
lent to the set of routes that a delivery vehicle can complete. The problem is to assign each vehicle
a feasible route so that the vehicles collectively visit all the locations that require packages while
minimizing the total cost of the routes.

The difficulty in solving the problem with an exact algorithm is that the algorithm must prove
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the optimality of a solution by showing that there is no better solution. Proving optimality requires
reasoning that all other feasible solutions are not better than the given solution. This can be
challenging for a few reasons. First, the number of solutions can be huge. This is because the
number of feasible sequences can be large and a solution is a collection of feasible sequences. Second,
the description of the set of solutions may be implicitly given by complicated constraints. Third,
the set of solutions and their objective values may lack a nice structure which prohibits arguments
to prove many solutions to be suboptimal at the same time.

The exact algorithm that gives the best performance for many of these problems uses a decompo-
sition approach. The problem is decomposed into two subproblems. The first subproblem restricts
solutions to use only a subset of the feasible sequences, which can greatly simplify the problem. The
second subproblem is to find a feasible sequence to add to this subset that admits a better solu-
tion to the first subproblem. The algorithm iterates between solving these two subproblems, and it
terminates when there is no solution to the second subproblem that would improve the solution to
the first subproblem. Although this method performs well for solving many problems, there are still
problems that it cannot solve efficiently.

The key idea of column elimination is to use relaxations instead of decompositions. A relaxation
of an optimization model removes or relaxes one or more of the constraints, allowing some infeasible
solutions to be considered feasible. Somewhat surprisingly, a relaxation of the model can have fewer
decision variables, making it easier to solve. However, the optimal solution to a relaxation may be
infeasible. So, column elimination starts with an initial relaxation and iterates between solving a
relaxation and improving the relaxation to remove any infeasible sequences found in the optimal
solution. Ideally, an easier-to-solve relaxation has an optimal solution that is feasible to the original
model, which implies that the solution is also an optimal solution to the original model.

Initial research on column elimination shows promising results. A problem-specific implemen-
tation of column elimination to solve the well-known vertex coloring problem achieves reasonably
competitive performance with the state-of-the-art approach based on column generation. Similarly,
a problem-specific implementation of column elimination to solve a truck-drone routing problem im-
proved several of the best-known bounds. Since then, more research has improved and generalized
the framework. This dissertation gives an overview of column elimination and focuses on research
after these two problem-specific implementations from the literature.

The name column elimination comes from the name of the exact algorithm that uses a decom-
position approach. That method is known as column generation because the second subproblem
generates sequences to add to the first subproblem, and the sequences are referred to as columns.
Meanwhile, column elimination starts with a relaxation that considers a superset of the feasible
sequences and removes infeasible sequences that appear in the optimal solution to the current re-
laxation, equivalent to eliminating columns.

1.2 Outline and Contributions
The dissertation is organized into chapters based on two published works (Karahalios and van
Hoeve 2022, 2023b), one submitted work (Karahalios and van Hoeve 2024), and two works in
progress. The works include many computational studies for which the code is available in two
repositories: (https://github.com/amkarahalios/dd_graph_color) and (https://github.com/
amkarahalios/dd_vrptw).

Chapter 2 gives the necessary background information, notation, and definitions that are used
throughout the dissertation. The background information is mainly about discrete optimization
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methodologies including dynamic programming, integer programming, and decision diagrams. Some
exact methods that have similarities with column elimination are mentioned.

Chapters 3 and 4 describe the column elimination framework. Chapter 3 gives a concrete ex-
ample of using column elimination to solve the capacitated vehicle routing problem. This chapter
includes the development of a Lagrangian method within column elimination, a method to incorpo-
rate cutting-planes, and the use of variable fixing. Chapter 4 introduces a general version of column
elimination. This chapter includes a generic conflict refinement algorithm based on a new definition
of a relaxed dynamic program, a method for embedding column elimination in branch-and-bound,
and experimental results on three more problems which include closing several open instances.

Chapters 5, 6, and 7 offer improvements to column elimination. Chapter 5 introduces primal
heuristics for exact algorithms that solve arc flow formulations. The primal heuristics are based on
the well-known method of large neighborhood search. Experimental results are shown on vehicle
routing problems. Chapter 6 shows how cutting-planes from path flow formulations can be translated
into cutting-planes for arc flow formulations. The refinement method from column elimination is
used to allow the cutting-planes to be expressed in the arc flow formulation. Experimental results
show how the addition of these cuts improves the performance of column elimination on capacitated
vehicle routing problems. Chapter 7 describes how a portfolio of variable orderings can be used to
improve column elimination for solving the graph coloring problem.

Chapter 8 is a conclusion of the dissertation. This chapter includes remarks about how column
elimination differs from existing methods, thoughts on the types of problems for which column
elimination can perform well, and directions for future work.
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Chapter 2

Discrete Optimization
Methodologies

This chapter introduces definitions, notation, and background information on discrete optimiza-
tion methodologies that are necessary to understand column elimination. The discrete optimization
methodologies are dynamic programming, integer programming, and decision diagrams. Exact al-
gorithms similar to column elimination are described.

2.1 Dynamic Programming
Dynamic programming is a method that uses a state-based system and a recursive function to solve
multistage decision problems (Bellman 1957). This work focuses on dynamic programming to solve
discrete deterministic finite-stage problems. In particular, consider the minimization problem of a
discrete decision process as defined in Karp and Held (1967). Let U be a universe of elements, S be
a set of ordered sequences of elements, each with arbitrary but finite length, and f : S → R be a
cost function over S. The problem is the following:

min
x∈S

f(x) (2.1)

A dynamic program is a model for the minimization problem of a discrete decision process that
uses states and transitions to encode the set of sequences of decisions and their costs. An important
attribute of the model is that the cost of a sequence can be determined recursively. This work further
assumes an additive cost structure, meaning that each transition is associated with a cost, and the
cost of a sequence is equal to the sum of the costs of its transitions. Formally, a dynamic program
P = (S, h, c) is defined by a set of states S including an initial state r ∈ S and a terminal state t ∈ S,
a state transition function h : (S × U)→ S and a cost function c : (S × U)→ R. A solution, often
referred to as a policy, is a sequence of transitions [(s1, u1), . . . , (sk, uk)] where (si, ui) ∈ S × U for
1 ≤ i ≤ k, such that s1 = r, h(si, ui) = si+1 for 1 ≤ i < k, and h(sk, uk) = t. The cost of a solution
is

∑k
i=1 c((si, ui)). For any f and S, there exists a dynamic program such that the set of solutions

and their costs is equivalent to the set of sequences S with costs f (Karp and Held 1967). The
minimization problem is equivalent to solving Z(r) where Z : S → R is a recursive value function
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with a base case Z(t) = 0 and the following form otherwise:

Z(s) = min
s′∈S
{Z(s′) + c(s′, u) : h(s′, u) = s} (2.2)

A state-transition graph of a dynamic program is its network representation. It is a directed
acyclic graph where each state is represented by a node and each transition is represented by an
arc. Given a dynamic program P = (S, h, c), we define its state-transition graph as D = (N ,A)
with node set N and arc set A. For each state s ∈ S we introduce a node in N . For each transition
h(si, u) = sj , we define an arc in A from the node for si to the node for sj . Parallel arcs are
distinguished by the transition element u. There is a one-to-one correspondence between sequences
in S and directed r-t paths in D.

There are heuristics and exact algorithms for solving dynamic programs. For some problems,
such as the knapsack problem, an exact dynamic programming algorithm runs in pseudo-polynomial
time (Martello and Toth 1990, Floyd 1962). For others, the worst-case run-time is exponential, so
state-space search heuristics are used in practice to try to find good solutions (Hart et al. 1968).
Domain-independent dynamic programming is a recent framework that includes modeling and ex-
actly solving dynamic programs (Kuroiwa and Beck 2024).

2.1.1 State-Space Relaxations
A state-space relaxation of a dynamic program is another dynamic program that is created by
mapping the states of the original dynamic program into a more compact state space. A state-
space relaxation can have more solutions than the original dynamic program and/or lower costs for
existing solutions. There is a trade-off between the size of the state space and how far the optimal
solution value of the relaxation is from the optimal solution value of the original dynamic program.
State-space relaxations were originally used to produce lower bounds for the well-known Traveling
Salesman Problem (Christofides et al. 1981b).

Formally, a state-space relaxation of a dynamic program P = (S1, h1, c1) is another dynamic
program (S2, h2, c2) that meets the following requirements. First, |S2| < |S1|. Second, there ex-
ists a mapping function µ : S1 → S2 such that for each s2 ∈ S1, for all (s1, u) ∈ h−1

1 ({s2}),
(µ(s1), u) ∈ h−1

2 ({µ(s2)}), where we define h−1({s2}) = {(s1, d) : h((s1, d)) = s2} as the preim-
age of s2 ∈ S, not to be confused with an inverse function. Third, for every s1 ∈ S2, c2(s1, u) =
min{s3∈S1|µ(s3)=u,µ(h1(s3,u))=h2(s1,u)}{c1(s3, u)}. It is difficult to find the state-space relaxation with
a given size that produces the strongest possible bound, although a procedure to do so is called
state-space ascent (Christofides et al. 1981b).

Algorithms for solving dynamic programs can use state-space relaxations. A branch-and-bound
method uses state-space relaxations to produce lower bounds at each node (Christofides et al. 1981a).
A sequential aggregation disaggregation algorithm uses state-space relaxations to find feasible solu-
tions with a bounded optimality gap (Bean et al. 1987). A successive sublimation dynamic program-
ming approach solves progressively refined state-space relaxations until an exact optimal solution is
computed (Ibaraki and Nakamura 1994). A decremental state-space relaxation algorithm (Righini
and Salani 2008), also known as a state-space augmenting algorithm (Boland et al. 2006), iteratively
solves state-space relaxations that are strengthened in a way that removes the current solution from
the relaxation.
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2.2 Integer Linear Programming
An integer linear program is an optimization model that has decision variables, some of which are
restricted to be assigned integer values, linear constraints, and a linear objective function. A linear
program is a model with the same form, but without restrictions on the integrality of the decision
variables. Consider an integer linear program of the following form, where I = {1, ...,m} is a set of
row indices, J = {1, ..., n} is a set of column indices, A ∈ Zm,n is a matrix, c ∈ Zn is a vector of
objective coefficients, and b ∈ Zm is a vector of limits for the constraints:

min
x

∑
j∈J

cjxj

s.t.
∑
j∈J

Aijxj ≥ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J
xj ∈ Z ∀j ∈ J

(2.3)

The linear program relaxation of an integer linear program is the linear program created by
removing the integrality constraints. Many algorithms exist to solve linear programs, including the
simplex method (Dantzig et al. 1955) and interior point methods (Karmarkar et al. 1991). The
linear program relaxation of the integer linear program above has the following form:

min
∑
j∈J

cjxj

s.t.
∑
j∈J

Aijxj ≥ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

(2.4)

The dual linear program of a (primal) linear program is a linear program that is derived from the
primal linear program in a prescribed way. The dual linear program has a variable for each constraint
in the primal linear program and a constraint for each variable in the primal linear program. The
classical result of strong duality states that if the primal linear program has an optimal solution,
then the dual linear program has an optimal solution and the optimal solution values are equal (Gale
et al. 1951). The dual linear program of the linear program above is as follows:

max
u

∑
i∈I

uibi

s.t.
∑
i∈I

Aijuj ≤ cj ∀j ∈ J

ui ≥ 0 ∀i ∈ I

(2.5)

A cutting-plane is a linear inequality that can be added to a linear program relaxation to
strengthen the formulation by removing fractional solutions, but without removing any solutions
to the integer linear program. There are general cutting-planes that can be applied to a generic lin-
ear program, such as Chvátal-Gomory inequalities (Chvátal 1973, Gomory 1960), and there are other
problem-specific cutting-planes such as rounded capacity cuts in vehicle routing problems (Augerat
et al. 1998). The separation problem is to find a cutting-plane that can be added to a linear program
relaxation to remove a given fractional solution. A cutting-plane algorithm iterates between solving
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the linear program relaxation and the separation problem, and the algorithm terminates when an
integer solution is found. A finite cutting-plane algorithm solves an integer linear program in a finite
number of iterations, which is possible with Chvátal-Gomory inequalities (Gomory 1960).

Branch-and-bound is an exact algorithm to solve integer linear programs by partitioning the
set of feasible solutions (Land and Doig 1960). The partition is often based on a single variable.
For example, for j ∈ J and π ∈ Z, one subproblem includes the constraint xj ≥ π and a second
subproblem includes the constraint xj ≤ π − 1. Each subproblem is an integer linear program,
so the process can be done recursively. Also, lower bounds on the optimal solution value of each
subproblem are obtained by solving the linear programming relaxation, which can be used to reason
that the optimal solution is not part of a subproblem, leading to a more efficient search.

Branch-and-cut uses cutting-planes to improve the lower bounds produced for each subproblem
during branch-and-bound (Padberg and Rinaldi 1987). A computational study shows that Chvátal-
Gomory cuts can improve a basic branch-and-bound approach (Balas et al. 1996). State-of-the-art
integer linear programming solvers use this approach (Jünger et al. 2009).

Variable fixing is the removal of a variable from an integer linear program by proving that the
variable must be assigned to a particular value in an optimal solution. This reduces the number of
variables in the integer linear program and can make it more easily solvable. A common variable
fixing procedure relies on an optimal solution to the dual of the linear program relaxation and an
upper bound on the optimal solution value (Nemhauser and Wolsey 1988). Any feasible solution
to the dual of the linear program relaxation can also be used for variable fixing (Mitchell 1997).
Consider the following example of variable fixing for the integer linear program above. Let u′ be a
feasible solution to the dual linear program of the linear program relaxation, and let χ be an upper
bound on the optimal solution value. A variable xj can be fixed to 0 if the following condition holds,
as proven in Mitchell (1997):

∑
i∈I

u′
ibi + cj −

∑
i∈I

u′
iAij > χ (2.6)

2.2.1 Column Generation
Column generation, also known as variable generation, is an algorithm for solving large-scale linear
programs. It was originally used to solve a multicommodity flow problem (Ford and Fulkerson 1958)
and then the cutting stock problem (Gilmore and Gomory 1961). One reason to use column gener-
ation is that it can solve linear programs without explicitly enumerating all the variables, making it
possible to solve linear programs that would otherwise be computationally intractable. Another rea-
son is that, for integer linear programs, column generation can solve a Dantzig-Wolfe reformulation
of a linear program, based on the Minkowski-Weyl decomposition of a convex polyhedron (Dantzig
and Wolfe 1961, Weyl 1950). This reformulation can have an optimal solution value that is better
than the linear programming relaxation (Geoffrion 1974).

Column generation solves a linear program by decomposing it into a restricted master problem
and a pricing problem. The restricted master problem is the linear program restricted to a subset of
variables, and the pricing problem is to find a variable that can improve the optimal solution value
of the restricted master problem or to prove that such a variable does not exist. The algorithm
terminates when the pricing problem returns that there is no improving variable. The hope is that
this happens after a small number of iterations.

13



Consider the linear program from above. The restricted master problem has the following form,
where J ′ ⊆ J is a subset of the variables:

min
x

∑
j∈J′

cjxj

s.t.
∑
j∈J′

Aijxj ≥ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J ′

(2.7)

The pricing problem is an optimization problem that looks for a variable that can improve the
optimal solution value of the restricted master problem. Technically, it checks if the optimal solution
to the dual linear program of the restricted master problem is also feasible to the dual linear program
of the original linear program. So, the problem can also be described as finding a constraint of the
dual linear program that is violated by the optimal solution of the dual linear program of the
restricted master problem, if one exists. This is equivalent to checking if the optimal solution value
of the following problem is negative, where u′ ∈ Rm is an optimal solution to the dual linear program
of the restricted master problem:

min
j∈J

cj −
∑
i∈I

u′
iAij (2.8)

The pricing problem can be a challenging optimization problem, as it must consider all variables
in the original linear program. However, column generation does not require the pricing problem to
find a variable with the minimum reduced cost at each iteration. A heuristic can quickly find an
improving variable for many iterations (Dumas et al. 1991). Still, an exact method for solving the
pricing problem is needed to prove that an improving variable does not exist which allows column
generation to terminate with an optimal solution to the linear program.

In some cases where the pricing problem is difficult to solve efficiently, a column generation
algorithm can instead solve a relaxation of the pricing problem (Fukasawa et al. 2006). Then,
column generation needs to handle solutions to the relaxed pricing problem that are infeasible to
the original pricing problem. It can add these ‘infeasible’ variables to the restricted master problem,
which means that column generation may produce an infeasible solution, but it still gives a lower
bound on the optimal solution value which can be useful for variable fixing or as part of a dual ascent
method (Baldacci et al. 2011a). Otherwise, a method must be incorporated into the algorithm to
strengthen the relaxation of the pricing problem and re-solve it until the optimal solution is feasible
to the original pricing problem (Desaulniers et al. 2008, Righini and Salani 2008).

Branch-and-price solves an integer linear program by using column generation to solve linear
program relaxations at each node during branch-and-bound (Appelgren 1971). Branch-and-cut-and-
price incorporates cutting-planes into branch-and-price (Nemhauser and Park 1991). Cutting-planes
have been classified into two categories. A robust cutting-plane can be added to the formulation with-
out changing the structure or dimension of the pricing problem, while a non-robust cutting-plane is
likely to decrease the computational efficiency of algorithms that solve the pricing problem (de Ara-
gao and Uchoa 2003). For non-robust cutting-planes, it can be more effective to add weakened
versions (Pecin et al. 2017a). Branch-and-cut-and-price has been particularly effective for schedul-
ing (Bulhoes et al. 2020) and routing problems (Pessoa et al. 2020).
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2.2.2 Lagrangian Relaxation
A Lagrangian relaxation of an integer linear program is a model that relaxes one or more constraints
and penalizes their violation in the objective (Geoffrion 1974). The model is an optimization problem
to find the vector of penalty values that gives the best objective value for the remaining optimization
problem, called the Lagrangian subproblem. Relaxing the constraints should make this subproblem
much easier to solve. Consider relaxing a subset of the indices I ′ ⊆ I to an integer linear program.
For a given vector of penalty values λ ∈ R|I′|, define the Lagrangian subproblem L(λ) as follows:

min
x

∑
j∈J

cjxj +
∑
i∈I′

λi(bi −
∑
j∈J

Aijxj)

s.t.
∑
j∈J

Aijxj ≥ bi ∀i ∈ I\I ′

xj ≥ 0 ∀j ∈ J
xj ∈ Z ∀j ∈ J

(2.9)

So, the Lagrangian relaxation has the following form:

max
λ≥0

L(λ) (2.10)

The Lagrangian relaxation has nice properties that makes it useful for solving an integer linear
program. First, its optimal solution value is at least as good as the optimal solution value of the
linear program relaxation, so it can be used as an alternative to the linear program relaxation in a
method like branch-and-bound. Second, the optimal solution value changes nicely as the vector of
penalty values changes; more technically, on the domain over which it is finite, the Lagrangian relax-
ation is piecewise linear, continuous, concave, and subdifferentiable. This enables some well-known
algorithms to solve the Lagrangian relaxation. Using these properties, the Lagrangian relaxation
has been successfully applied to many problems (Held and Karp 1970, Fisher 1973).

A Lagrangian method is an algorithm to solve the Lagrangian relaxation. We will focus on one
such algorithm called subgradient descent. Subgradient descent begins with an initial feasible vector
of penalties, and iteratively takes steps in the direction of a subgradient. At iteration k, let λk ∈ Rm
be the vector of penalty values and xk be an optimal solution to L(λk). Subgradient descent updates
the vector of penalty values according to the following equation, where sk ∈ R is a step size to take
in the direction of the given subgradient:

λk+1
i = λki + sk(bi −

∑
j∈J Aijx

k
j ) (2.11)

The choice of the initial solution and the step size at each iteration can greatly impact the com-
putational performance of subgradient descent. A simple initial solution sets all penalties equal to 0,
but another initial solution that uses information about the problem may improve the performance
of the algorithm (Fisher 1981). A commonly used step size is the Polyak step size (Polyak 1969).
Subgradient descent converges to an optimal solution when this step size is used (Polyak 1978).
Another commonly used step size that makes subgradient descent provably converge is the Polyak
target-value step size (Polyak 1969). This step size uses an estimate of the optimal solution value,
denoted f∗:

sk = (f∗−L(λk))
||λk||2 (2.12)
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Relax-and-cut incorporates cutting-planes into a Lagrangean method (Escudero et al. 1994).
Cutting-planes can improve the relaxation, but they are difficult to implement for two reasons (Lu-
cena 2006). First, identifying a cutting-plane requires an optimal solution, but a Lagrangian method
like subgradient descent is an iterative approach that only theoretically converges to the optimal
solution, and in practice may terminate before optimality. Second, after identifying a cutting-plane,
it likely needs to be relaxed and penalized in the objective to avoid making the Lagrangian sub-
problem difficult, which can change the optimal values of the other penalties. There are two main
relax-and-cut approaches. Delayed relax-and-cut solves the Lagrangian relaxation with subgradient
descent until some stopping criterion, then identifies cutting-planes, decides to keep them in the
formulation or likely penalizes their violation in the objective, and then restarts subgradient descent
on the updated Lagrangian relaxation. Non-delayed relax-and-cut adds the cutting-planes during
subgradient descent without restarting the algorithm. These versions can improve the performance
of a Lagrangian method, but the benefits can be limited due to the difficulties (Lucena 2005).

2.2.3 Arc Flow Formulations
An arc flow formulation is an integer linear program defined over a network (Ahuja et al. 1993).
In particular, an arc flow formulation can be defined over the state-transition graph of a dynamic
program (de Lima et al. 2022). To do this, we introduce additional resource costs for the dynamic
program transitions to represent coefficients for linear constraints. Let G = {gj}|J|

j=1 be the set
of these additional resources where gj : A → R for each j ∈ J . The dynamic program becomes
P = (S, h, c,G). The model has a decision variable ya for each arc a ∈ A that corresponds to the
flow through the arc. The following is a general form for an arc flow formulation:

F : min
∑
a∈A

c(a)ya (2.13)

s.t.
∑
a∈A

gj(a)ya ≥ bj ∀ j ∈ J (2.14)∑
a∈δ+(s)

ya −
∑

a∈δ−(s)

ya = 0 ∀ s ∈ N\{r, t} (2.15)

ya ∈ Z+ ∀ a ∈ A (2.16)

An arc flow formulation can be solved directly with an integer linear programming solver or
with branch-and-price (Valério de Carvalho 1999, Pessoa et al. 2010, Gouveia et al. 2019). Given an
acyclic state-transition graph, a solution to the arc flow formulation can be decomposed into a set
of paths and corresponding flow values (Ahuja et al. 1993). This transformation reveals that an arc
flow formulation has an equivalent path-based formulation, which is an integer linear program with
one variable for each path with appropriate objective and constraints. The path-based formulation
is commonly solved with branch-and-price, so an arc flow formulation gives a direct way to solve an
equivalent formulation without a decomposition. However, the state-transition graph can be large,
preventing the arc flow formulation from being solved efficiently by a generic integer programming
solver.

Iterative refinement algorithms solve large arc flow formulations by starting with an arc flow
formulation over a state-space relaxation and using the optimal solution to update the relaxation.
The main distinguishing features of such algorithms are the initial relaxation and the algorithm to
update the relaxation. The following are examples of such algorithms. An iterative discretization
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algorithm solves a vehicle routing problem by starting with an initial relaxation that rounds fractional
values of distances and refines the relaxation by disaggregating some nodes (Macedo et al. 2011).
A method called dynamic discretization discovery starts with an initial state-space relaxation that
discretizes time in a way that maintains certain properties of its solutions and refines the relaxation
by a two-step process that adds new time points and lengthens arcs (Boland et al. 2017). An iterative
aggregation and disaggregation algorithm starts with an initial relaxation that aggregates nodes
together and then the refinement step at least partially disaggregates these aggregations (Clautiaux
et al. 2017).

2.3 Decision Diagrams
A decision diagram is a model for a discrete optimization problem that encodes a set of solutions
and solution values as paths in a directed acyclic graph. Consider a similar problem to (2.1), where
each x is a tuple (x1,...,xn) of discrete variables each with finite domains U1,...,Un respectively, and
f : S → R is a cost function:

min
x∈S

f(x) (2.17)

Formally, a decision diagram is a directed acyclic graph G = (N ,A) whose node set N is
partitioned into layers 1, ..., n corresponding to the variables x1, ..., xn, including a root node in
layer 1 and a terminal node in a final layer n + 1. For each node v in layer i ∈ {1, ..., n}, there is
a directed arc in A for each value ui ∈ Ui which represents setting xi = ui. A weighted decision
diagram also has costs for each arc c : A → R. An exact decision diagram is a decision diagram such
that the set of paths from the root node to the terminal node is equivalent to the set of solutions
S, and the sum of the arc costs along the path for each solution x ∈ S equals f(x) (Bergman et al.
2016b).

There are several forms of decision diagrams. A binary decision diagram has two arcs from each
node and represents a Boolean function (Akers 1978, Lee 1959). A reduced ordered binary decision
diagram is made more compact by merging nodes that are the roots of equivalent (isomorphic)
subgraphs (Bryant 1986). An edge-valued binary-decision diagram represents an integer function
or a psuedo-Boolean function (Lai et al. 1994). A multi-valued decision diagram allows more than
two arcs to originate from each node (Srinivasan et al. 1990). Decision diagrams are closely related
to dynamic programs, with one key difference being that the state-transition graph of a dynamic
program is not reduced like decision diagrams (Hooker 2013).

An algorithm to solve an exact decision diagram requires compiling the graph and finding a
shortest path from the root node to the terminal node, according to the arc costs. There are two
common compilation methods. Top-down compilation performs a depth-first search over all possible
assignments to the variables, and stores memory to reduce the decision diagram either during or
after search (Andersen et al. 2007). Incremental refinement partitions some constraints that define
the set of solutions S, starts with building a decision diagram for some of these constraints, and then
iteratively introduces the others (Huang and Darwiche 2005). Instead of creating a new decision
diagram at each step of incremental refinement, it is possible to update the current decision diagram
to incorporate new constraints by adding nodes and adding/removing arcs, referred to as vertex
splitting (Hadzic et al. 2008).
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The variable ordering of a decision diagram is the order of the discrete variables in the tuple
that describes solutions. Different variable orderings can create decision diagrams of different sizes,
so heuristics can be helpful to try to create a variable ordering that produces a small diagram to
optimize over (Fujita et al. 1993). It is difficult to find the variable ordering that produces a decision
diagram of smallest size, but algorithms exist to do this (Friedman and Supowit 1987) A static
variable ordering is a single variable ordering that is used to compile a decision diagram and solve
a problem. A dynamic variable ordering can be updated during the compilation process (Rudell
1993).

2.3.1 Relaxed Decision Diagrams
A relaxed decision diagram is a decision diagram whose paths are equivalent to a superset of the
feasible solution set S and/or the cost of each solution x ∈ S is at least as good as f(x) (Andersen
et al. 2007, Bergman et al. 2016c). By this definition, an optimal solution to a relaxed decision
diagram gives a lower bound on the optimal solution value for the problem. Both top-down com-
pilation (Bergman et al. 2016c) and iterative refinement (Hadzic et al. 2008) can be modified to
produce a relaxed decision diagram. The top-down compilation approach merges nodes to maintain
a limit on the maximum number of nodes on a layer. The iterative refinement approach can refine
a subset of the constraints that define the feasible set of sequences.

An algorithm called branch-and-bound with decision diagrams solves the problem by using relaxed
decision diagrams for lower bounds at each node (Bergman et al. 2016c). Peel-and-bound is an
extension of branch-and-bound with decision diagrams that improves computational performance by
reusing compilation steps that are needed at more than one node of a branch-and-bound tree (Rudich
et al. 2023). For these branch-and-bound methods, a restricted decision diagram that contains a
subset of feasible solutions is used to obtain a feasible solution (Bergman et al. 2014b).

The origins of column elimination are in two works that each solve a discrete optimization
problem with an arc flow formulation over a decision diagram. The initial work solves the vertex
coloring problem (van Hoeve 2022). The algorithm begins with an arc flow formulation over a relaxed
decision diagram that represents a collection of subsets of the vertices in the graph, a superset of
the independent sets, and iterates between solving the arc flow formulation with an integer linear
programming solver and refining the underlying relaxed decision diagram. The refinement algorithm
removes an infeasible sequence from the relaxed decision diagram by making local changes to the
network that introduces relatively few nodes and arcs. The algorithm is improved by solving the
linear program relaxation of the arc flow formulation for many iterations before switching to solving
the integer linear program. A second work solves a truck-drone routing problem (Tang and van Hoeve
2024). The arc flow formulation has solutions that are each a single path through a state-transition
graph. The algorithm starts with common route relaxations from dynamic programming and iterates
between solving the arc flow formulation and refining the route relaxation. One contribution is that
the initial relaxed decision diagram is based on a state-space relaxation. Another contribution is to
solve the linear program relaxation of the arc flow formulation via a Lagrangian method, creating
the following two new approaches. LagAdapt refines the relaxed decision diagram at each iteration of
subgradient descent. LagRestart collects infeasible sequences in a container and removes them from
the relaxed decision diagram only after a limit on the number of infeasible sequences is reached, and
then restarts subgradient descent.
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Chapter 3

Column Elimination for the
Capacitated Vehicle Routing
Problem

This chapter introduces column elimination for solving the capacitated vehicle routing problem. It
is based on the work by Karahalios and van Hoeve (2023b). Our work advances column elimination
from prior papers in three significant ways. First, it extends the Lagrangian method proposed
in Tang (2021). In particular, the arc flow formulation for the capacitated vehicle routing problem
has solutions that are each multiple paths through a state-transition graph, whereas each solution
to the arc flow formulation in the previous work is a single path. So, the Lagrangean subproblem
for the capacitated vehicle routing problem is a minimum cost flow problem while the Lagrangian
subproblem in the previous work is a shortest path problem. This work implements an efficient
successive shortest paths algorithm to solve this more challenging Lagrangian subproblem. Second,
cutting-planes are introduced to the arc flow formulation that strengthen the dual bound. Third,
variable fixing is incorporated to reduce the size of the problem.

3.1 Introduction
The capacitated vehicle routing problem (CVRP) can be stated as follows (Toth and Vigo 2014).
Given a set of locations each with a specified weight and a fleet of vehicles each with a specified
capacity, the problem asks to design a route for each vehicle such that each location is visited by
a vehicle, for each truck the total weight of its visited locations does not exceed the capacity, and
the sum of the vehicle route lengths is minimized. It is a central problem in logistics and has
become increasingly important over the last decade due to the rise of last-mile delivery applications.
The CVRP is among the most studied NP-hard combinatorial optimization problems and finding
provably optimal solutions remains a challenge in practice. Current state-of-the-art exact methods
can solve up to around 200 locations optimally within a reasonable of time, with branch-cut-and-
price (BCP) methods performing particularly well (Fukasawa et al. 2006, Baldacci et al. 2011b,
Pecin et al. 2017b, Pessoa et al. 2018, 2020).

BCP is an effective method for solving generic large-scale integer programming models (Barnhart
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et al. 1998). It relies on column generation to solve the linear programming relaxation: working
with a restricted set of variables (or columns), column generation iteratively adds new variables
to the model until an optimal basis is found. Despite its successes, column generation has some
weaknesses. For example, it may take many iterations to converge to the optimal solution due to
dual degeneracy of the intermediate solutions. Furthermore, branching decisions or cutting-planes
that strengthen the relaxation may complicate the pricing problem that finds new variables.

We study an alternative approach that does not rely on a pricing problem, thereby avoiding
the potential drawbacks of column generation mentioned above. Instead of using a restricted set
of columns, column elimination works with a relaxed set of columns, from which infeasible ones are
iteratively eliminated. As the total number of columns can be exponentially large, we use state-
space relaxations to compactly represent and manipulate the set of columns. This method was first
introduced for the graph coloring problem in (van Hoeve 2020c, 2022), then applied to the traveling
salesperson problem with a drone (Tang 2021, Tang and van Hoeve 2024), and later termed ‘column
elimination’ (van Hoeve and Tang 2022).

The main focus of this work is to develop strong dual bounds for the CVRP using column
elimination. As will be formalized later, column elimination and column generation will produce the
same dual bound if they work with the same underlying state-space relaxation. Column elimination
can potentially produce stronger bounds than the initial state-space relaxation as it can remove
infeasible columns beyond those that are excluded by the initial state-space relaxation. Moreover,
column elimination allows a more liberal use of cutting-planes to strengthen the relaxation. We
show how existing cuts from the column generation literature can be expressed directly into the
column elimination model, while in addition the structure of the arc flow formulation permits us
to develop new cuts. The novel contributions include developing an efficient solution method via
a Lagrangian reformulation, introducing cuts to column elimination, incorporating variable fixing,
and showing how column elimination can produce bounds competitive with state-of-the-art solvers
for the CVRP.

The chapter is organized as follows. In Section 3.2 we present the column formulation of the
CVRP. Section 3.3 describes the dynamic program and arc flow formulation. The column elimination
procedure is presented in Section 3.4. Section 3.5 presents our Lagrangian relaxation. In Section 3.6
we describe how cutting-planes can be added to strengthen the model. Section 3.7 presents a reduced
cost-based variable fixing procedure to reduce the size of the model. We conduct experimental results
in Section 3.8 and conclude in Section 3.9.

3.2 Column Formulation for CVRP
We first give a formal definition of the CVRP (Toth and Vigo 2014). Let U = {0, 1, . . . , n} be a
set of locations with the depot as 0. Each location has demand qi ≥ 0 and Tij > 0 is the distance
from i to j. Let K be the number of (homogeneous) vehicles, each with capacity Q. A route is a
sequence of locations [u1, u2, . . . , uk] starting and ending at the depot with total demand at most
Q. The distance of a route is the sum of its arc lengths, i.e.,

∑k−1
i=1 Tuiui+1 . The CVRP consists in

finding K routes such that each vertex except for the depot belongs to exactly one route and the
sum of the route distances is minimized.

The column formulation for the CVRP is based on the setR of all feasible elementary routes (Balin-
ski and Quandt 1964). We let dr denote the distance of route r ∈ R. We define a matrix Mn×|R|

such that Mir = 1 if location i ∈ {1, 2, . . . , n} belongs to route r ∈ R, and Mir = 0 otherwise. That
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is, each column vector in M corresponds to a route. Lastly, we define a binary decision variable xr
for each r ∈ R. The column formulation of the CVRP is:

min
∑
r∈R

drxr

s.t.
∑
r∈R

Mirxr = 1 ∀i ∈ {1, 2, . . . , n}∑
r∈R

xr = K

xr ∈ {0, 1} ∀r ∈ R.

(3.1)

This model is also known as the set partitioning formulation. In practice the set of routes R often
has exponential size, which restricts the direct application of the set partitioning model to very small
instances. Branch-and-price (Barnhart et al. 1998) provides a more scalable approach by using a
column generation procedure to solve the continuous linear programming relaxation of (3.1).

Column generation starts by solving the linear programming relaxation of the set partitioning
model defined on a (small) subset of variables, known as the restricted master problem. Using the
dual variables of the optimal solution it then solves a pricing problem to find a new variable with
a negative reduced cost. This process continues until no more improving variables exist and the
restricted master has a provably optimal basis. To ensure integer feasibility, column generation is
embedded into a systematic search.

Solving the pricing problem for the CVRP is not straightforward, because it corresponds to
the NP-hard elementary shortest path problem with resource constraints (Irnich and Desaulniers
2005). It can be solved with a dynamic programming labeling algorithm, which is however limited
by the exponential size of the state-space. A computationally efficient alternative is to relax the
pricing problem to find a shortest path that is not necessarily elementary, i.e., certain locations
can be visited more than once (Christofides et al. 1981a). Recent examples include the q-route
relaxation (Fukasawa et al. 2006) and the ng-route relaxation (Baldacci et al. 2011b). The linear
programming model from route relaxations can be further strengthened by adding cutting-planes to
the restricted master problem (Pecin et al. 2017b).

3.3 Arc Flow Formulation for CVRP
The key ingredient of the column elimination procedure is to compactly represent the set of routes
R via the state-transition graph of a dynamic program. The CVRP can then be formulated as an
arc flow formulation over the dynamic program as in prior works (van Hoeve 2022, Tang and van
Hoeve 2024).

3.3.1 Dynamic Program for Storing Routes
We define PESPRC = (S, h, c) as a dynamic program that encodes the set of routes. It is equivalent
to the dynamic program for the elementary shortest path problem with resource constraints (Irnich
and Desaulniers 2005). Define each state in S by a tuple (NG, w, v), where NG is a ‘no-good’ set of
visited locations, w is the current load, and v is the current location. The initial state r is (∅, 0, 0)
and the terminal state t is a tuple of sentinel values. The transition and cost functions are defined
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for two cases: visiting a location and returning to the depot. For each state s = (NG, w, v) and
element i ∈ U such that i /∈ NG, i > 0, and w + qi ≤ Q, define the transition function as

h(s, i) = (NG ∪ {i}, w + qi, i)

and c(s, i) = Tvi. For each state s ∈ S, define h(s, 0) = t and cost c(s, 0) = Tv0. Other combinations
of states and decisions are infeasible. Define gj(s, i) = Ji = jK for each j = 1, ...,m.

3.3.2 State-Space Relaxations
The two most-used state-space relaxations for the CVRP in the column generation literature are the
q-route relaxation (Fukasawa et al. 2006) and the ng-route relaxation (Baldacci et al. 2011b). Both
are based on the dynamic program P , but relax the set of visited locations S.

The q-route relaxation maintains the last q visited locations. We define the dynamic program
Pq for this state-space relaxation as follows. Define a state as (SQ, w) where w is defined as above,
and SQ = [u1, . . . , uq] is a sequence of locations. The initial state is ([ - , . . . , - ], 0). Given a state
s = (SQ, w) and location i ∈ U such that i /∈ SQ and w + qi ≤ Q, we define the transition function
as

hq(s, i) = ([u2, . . . , uq, i], w + qi)

with associated transition cost function cq((SQ, w), i) = Tiqi.
For the ng-route relaxation, we assume that a set Ni ⊆ U of size g exists for each i ∈ {1, . . . , n}.

The set Ni must include i and typically represents the g locations closest to i. We define the dynamic
program Png for this state-space relaxation as follows. Define a state as (NG, w, v) where the ‘no-
good’ set NG ⊆ V is a subset of visited locations, and w and v are as above. The initial state is
(∅, 0, 0). Given a state s = (NG, w, v) and location i ∈ U such that i /∈ NG and w + qi ≤ Q, we
define the transition function as

hng((NG, w, v), i) = ((NG ∪ {i}) ∩Ni, w + qi, i)

with associated transition cost function cng((NG, w, v), i) = Tvi. Observe that Pq and Png forbid
cycles of length at most q and g, respectively.

3.3.3 Properties of State-Space Relaxations
We show two useful properties of the above dynamic programs. Given a dynamic program P , let
SP be its set of solutions and fP : SP → R be its cost function. Slightly abusing notation, let ds
represent the distance of the route associated with a sequence s ∈ S.

Proposition 1. SPESP RC
= R and for each s ∈ SPESP RC

, fESPRC(s) = ds.

Proof. PESPRC encodes elementary paths and represents all possible feasible routes and their asso-
ciated distances.

Proposition 2. SP ⊆ SPq
, SP ⊆ SPng

and for each x ∈ SPESP RC
, fESPRC(x) = fq(x) = fng(x)

Proof. Both Pq and Png encode a relaxation that contains elementary paths, and therefore represent
a superset of all possible feasible routes. Because they both maintain the last visited location their
cost functions are not relaxed.
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3.3.4 Arc Flow Formulation
We next reformulate the set partitioning model (3.1) as an arc flow formulation. Let D = (N ,A)
be a state-transition graph for a dynamic program that represents a set of routes for the CVRP. We
introduce a ‘flow’ variable ya ≥ 0 for each a ∈ A. We denote the set of arcs in A that correspond to
a transition for location i by Ai. The model is as follows:

F (D) : min
∑
a∈A

caya (3.2)

s.t.
∑

a∈δ−(u)

ya −
∑

a∈δ+(u)

ya = 0 ∀u ∈ N \ {r, t} (3.3)

∑
a∈Ai

ya = 1 ∀i ∈ U \ {0} (3.4)

∑
a∈δ+(r)

ya = K (3.5)

ya ∈ {0, 1} ∀a ∈ A. (3.6)

The objective function (3.2) minimizes the sum of all arc costs. The ‘flow conservation’ con-
straints (3.3) ensure that the solution is a collection of r-t paths. Constraints (3.4) ensure that
all locations are visited once. Constraint (3.5) enforces that exactly K units of flow originate from
r. The binary constraints (3.6) complete the formulation.

Let DP be the state-transition graph for a dynamic program P .

Theorem 1. F (DPESP RC
) is an exact formulation of the CVRP.

The proof relies on the fact that the dynamic programming model represents all possible routes,
that each solution of the network flow model consists of exactly K r-t paths, that each r-t path
corresponds to a feasible route, and that each location is only visited by one route.

Corollary 1. F (DPq
) and F (DPng

) yield a dual bound for the CVRP.

In the remainder of this chapter, we will use the continuous linear programming relaxation of
model F (D), referred to as LP(F (D)), which is obtained by replacing the integrality constraints
(3.6) by 0 ≤ ya ≤ 1 for all a ∈ A. Note that the upper bound is redundant here due to constraints
(3.4).

3.4 Column Elimination Procedure
We present a schematic representation of column elimination in Figure 3.1. Starting with an initial
state-transition graph of a state-space relaxation, the column elimination procedure iteratively 1)
solves the constrained network flow model F (D), 2) decomposes the solution into paths (routes),
3) identifies infeasible paths and removes them from D, and repeats. The process terminates when
no infeasible paths are detected in which case F (D) is solved to optimality. It can also terminate
earlier when the dual bound matches a given (or heuristically generated) primal bound, or when a
different stopping criterion such as a time or memory limit is met. The procedure can utilize either
the integer model F (D) or its continuous relaxation LP(F (D)); using LP(F (D)) would solve the
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Figure 3.1: Overview of the column elimination framework, adapted from Tang and van Hoeve
(2024).

continuous linear programming relaxation of (3.1), but could be embedded in branch-and-bound to
solve the full problem.

Any (existing) state-space relaxation for the CVRP can be applied to construct the initial state-
transition graph. Recall that model PESPRC has state definition (S,w, v), and each of these three
elements can potentially be relaxed to define a state-space relaxation. The q-route and ng-route
relaxations only relax the elementarity constraint, i.e., the set S. This means that conflicts will only
come in the form of repeated labels; each path respects the truck capacity constraint and the route
costs are exact. For a state-transition graph D derived from such a state-space relaxation, F (D) is
an exact formulation for the CVRP. In practice, we prefer using a relaxation that is relatively small
and provides a ‘good’ starting point in terms of bound quality from LP(F (D)). In our experiments,
we therefore use Pq with q = 1 and Png with g = 2 to initialize the state-transition graph, with the
latter performing best.

Given the initial state-transition graph D, we solve the associated model LP(F (D)), apply a
path decomposition of the solution, and inspect the paths for any conflicts. For our choice of state-
space relaxations, the only conflicts arise from repetition of locations along a path. To remove a
conflict, we follow the (partial) path elimination process outlined in (van Hoeve 2022): it essentially
separates the path by introducing a new node for each location in the path, and removing the arc
associated with the repeated location. During this process, we will update the state information of
the nodes along the separated path. We illustrate conflict separation in the next example, and refer
to (van Hoeve 2022) for more details.

Locations U = {0, 1, 2, 3, 4}
Depot = 0
Demands q1 = q2 = q3 = 1, q4 = 2
Number of trucks K = 2
Vehicle capacity Q = 3

lij 0 1 2 3 4
0 0 5 10 5 10
1 5 0 10 10 15
2 10 10 0 10 15
3 5 10 10 0 10
4 10 15 15 10 0

Figure 3.2: Input data for the CVRP instance in Example 3.4.1.

Example 3.4.1. Consider the CVRP instance with the problem data given in Figure 3.2. The
integer optimal solution uses routes [0, 1, 2, 0] and [0, 3, 4, 0] with total distance 50. The state-
transition graph for Pq with q = 1 is presented in Figure 3.3(a). Each node in the diagram is
associated with its SQ state, i.e., the last visited location. The weights are omitted from the states;
instead nodes with the same cumulative weight are represented in the same layer. For clarity, we
also omit the arc labels and arc costs. Arcs into t correspond to terminating a route and are dashed.
The optimal solution to the linear programming relaxation of F (D) yields dual bound 48.333 and
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a. Relaxed decision diagram from DPSQ1 .
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b. Refined decision diagram.

Figure 3.3: State-transition graphs for the CVRP instance in Example 3.4.1. Figure (a) depicts the
state-transition graph for Pq with q = 1. The optimal solution to model LP(F (D)) is indicated by
thick blue arcs. Figure (b) represents the refined decision diagram after eliminating the partial path
[0, 1, 2, 1] that contains a conflict.

uses the following arc-label specified paths: path (0, 1, 2, 1, 0) with flow value 1
3 , path (0, 1, 2, 3, 0)

with flow value 1
3 , path (0, 4, 2, 0) with flow value 1

3 , and path (0, 4, 3, 0) with flow value 2
3 .

The first path contains a conflict: label 1 is repeated. We separate this conflict by rerouting
the path to a new node with state SQ = [1, 2] remembering location 1 in addition to 2. As a
result, we eliminate the outgoing arc that transitions to location 1 from the new state. The refined
state-transition graph is depicted in Figure 3.3(b). It yields a dual bound of value 50, which is
optimal.

3.5 Lagrangian Relaxation
Because the state-transition graph can grow large in size, solving the arc flow formulation can be-
come the computational bottleneck of our method, even when we consider the linear programming
relaxation. To potentially solve the model more efficiently, we consider solving a Lagrangian re-
laxation, similar to (Tang 2021, Tang and van Hoeve 2024), that has optimal bound equivalent to
LP(F (D)). We obtain our Lagrangian relaxation of the constrained network flow model by dualizing
constraints (3.4) that require each location to be visited once. We introduce a Lagrangian multiplier
λi for each i ∈ U where λ0 = 0 is used for notational ease, and define the Lagrangian relaxation as
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follows:

L(D,λ) : min
∑
a∈A

caya +
∑
i∈U

λi(1−
∑
a∈Ai

ya) (3.7)

s.t.
∑

a∈δ−(u)

ya −
∑

a∈δ+(u)

ya = 0 ∀u ∈ N \ {r, t} (3.8)

∑
a∈δ+(r)

ya = K (3.9)

ya ∈ {0, 1} ∀a ∈ A. (3.10)

The objective function (3.7) can be rewritten as follows:

min
∑
a∈A

caya −
∑
i∈U

λi
∑
a∈Ai

ya +
∑
i∈U

λi =

min
∑
i∈U

∑
a∈Ai

(ca − λi)ya +
∑
i∈U

λi.

As a consequence, for fixed λ, the Lagrangian relaxation can be solved as a (continuous) minimum-
cost network flow problem over the state-transition graph, using ca − λi as the cost for each arc
a ∈ Ai, yielding an integer optimal solution. In fact, given constraints (3.9) and the unit capacity
constraints on the arcs, each solution consists of K arc-disjoint r-t paths. By applying the successive
shortest paths (SSP) algorithm (Ahuja et al. 1993) to solve L(D,λ) we obtain the following result:

Lemma 1. Given a state-transition graph D = (N ,A) and fixed λ, the Lagrangian relaxation
L(D,λ) can be solved in O(K(|N | log(|N |) + |A|)) time.

We also implemented a dedicated algorithm, based on the ‘minimum update Successive Shortest
Paths’ (muSSP) algorithm that was developed for specific directed acyclic graphs in the content
of multi-object tracking in computer vision (Wang et al. 2019). Although graphs with a slightly
different structure are considered in (Wang et al. 2019), the algorithm generalizes to our case:
weighted directed acyclic graphs with one source (the root), one sink (the terminal), and unit
capacities. The muSSP algorithm leverages the fact that most updates to the shortest path tree
through Dijkstra’s algorithm are not useful, and it aims instead to make minimal updates to the
shortest path tree. While it has the same theoretical worst-case time complexity as the SSP, in
practice the muSSP algorithm can be an order of magnitude more efficient than the standard SSP
algorithm.

The Lagrangian relaxation maxλ L(D,λ) finds the multipliers that provide the best Lagrangian
bound. Because the objective in L(D,λ) is concave and piecewise linear, the dual can be solved via
a subgradient method. At each iteration k of the subgradient method, one choice for a subgradient
that we will use is γk such that γki = (1−

∑
a∈Ai yka) where yka is the solution to L(D,λk). Then we

update the dual multipliers for the next iteration as λk+1 = λk + αkγk, where we use an estimated
Polyak step size αk (Boyd et al. 2003). Note that the initial choice of multipliers λ0 can be important
for solving the dual quickly (Bertsekas 2014).

We remark that the optimal Lagrangian dual bound is equal to the optimal linear programming
bound from LP(F (D)), when both apply the same state-transition graph. Moreover, when the
column elimination process uses LP(F (D)) or L(D,λ), its bound at termination is equal to the
column generation bound of the set partitioning model (3.1), assuming that all methods use the
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same underlying dynamic programming formulation, as observed in Tang and van Hoeve (2024).
That is, the state-transition graph is for the the same dynamic programming formulation in its
construction as column generation uses in the pricing problem.

Lastly, we note that in each iteration of the subgradient method for solving the Lagrangian dual,
the solution can be used to identify and separate conflicts. However, separating a conflict updates
the state-transition graph, which can change the optimal dual values. So, similar to (Tang 2021),
we identify and store conflicts during subgradient descent until we obtain a batch of 100 conflicts,
after which we separate the conflicts and restart subgradient descent at iteration 0 from the current
dual values.

3.6 Cutting-Planes
Results from the literature show that the LP relaxation of the set partitioning formulation for CVRP,
solved via column generation, frequently has a 1-4% optimality gap. To further strengthen the LP
relaxation several classes of valid inequalities can be added. According to the literature, the most
effective are rounded capacity cuts, strengthened comb inequalities, and subset-row cuts (Lysgaard
2003, Fukasawa et al. 2006, Pecin et al. 2017b). The first two types of cuts are called robust in the
column generation literature because they do not affect the structure of the pricing problem, while
the subset-row cuts are not robust. We next show how rounded capacity cuts and strengthened comb
inequalities can be implemented in our arc flow formulation LP(F (D)), as well as a generalization
of subset-row cuts as a type of clique cut.

Rounded capacity cuts ensure that a subset of locations S is visited by a sufficient number of
trucks to meet its aggregate demand. In column generation these cuts can be added to model (3.1)
so long as the underlying routes are stored for each r ∈ R. Let pSr be the number of times route
r uses an edge between S and V \S, and let k(S) = ⌈ 1

Q

∑
i∈S qi⌉. The cut added to the restricted

master problem is
∑
r∈R p

S
r xr ≥ 2k(S), and the associated dual variable is added to controls in the

dynamic program for the pricing problem that correspond to a route traversing an edge between S
and V \S. To add this cut in column elimination, let AS be the set of arcs a ∈ A such that ℓ(a) ∈ S
and the node u that is the head of a has state with last visited location i ∈ V \S, or the other way
around with ℓ(a) ∈ V \S and i ∈ S. A rounded capacity cut for set S can be modeled by adding to
LP(F (D)) the following inequality:

∑
a∈AS ya ≥ 2k(S). Note that when solving LP(F (D)) using

the Lagrangian formulation, this constraint can be dualized.
Strengthened comb inequalities are a generalization of comb inequalities that have been proven

highly useful for solving the Traveling Salesman Problem (Lysgaard et al. 2004). A strength-
ened comb inequality is defined by a handle set of locations H and teeth sets of locations Tt for
t ∈ {1, ..., T}. Let S(H,T1, ..., TT ) be the appropriately defined right hand side for the inequal-
ity (Lysgaard et al. 2004). In column generation, this cut also requires storing the underlying
routes and can be added to the restricted master problem as

∑
r∈R p

H
r xr +

∑
t∈T

∑
r∈R p

Tt
r xr ≥

S(H,T1, ..., TT ). The associated dual variable is then added to controls in the dynamic program
for the pricing problem that correspond to traversing edges with one endpoint in H or one of Ti
and the other endpoint not in that set. In column elimination, a strengthened comb inequality
with handle H and teeth Tt can be modeled by adding to LP(F (D)) the following inequality:∑
a∈AH ya +

∑
t∈{1,...,T}

∑
a∈ATt ya ≥ S(H,T1, ..., TT ). This constraint can also be dualized when

using the Lagrangian formulation to solve LP(F (D)).
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Subset row cuts are non-robust cuts that have been successfully applied to the CVRP. In par-
ticular, the limited memory subset row cuts are an important part of the success of the column
generation method in (Pecin et al. 2017b). Since the arc flow formulation representation does not
have a matrix view of the set of routes, subset row cuts do not directly translate to the LP(F (D))
model. Chapter 6 shows how to update the state-transition graph to allow a subset-row cut to be
formulated in the arc flow model. However, in this work, we formulate a version of them over the ex-
isting state-transition graph and arc flow model by considering a generalization of these cuts, called
clique cuts, defined over a specific conflict graph (Balas and Ho 1980). These cuts are non-robust
and have been used in (Baldacci et al. 2008) but not until the problem size has been reduced. The
structure of our state-transition graph allows column elimination to implement a specific version
of these cuts. Let D = (N ,A) be a state-transition graph as defined above. The conflict graph
GC = (N , AC) is defined on node set N . Its arc set AC contains all arcs (i, j) such that 1) the
set of visited locations in the states associated to nodes i and j have a non-empty intersection, and
2) nodes i and j never appear on the same directed path in D. A clique cut states that the flow
through nodes in a clique of GC must be at most 1:

Theorem 2. Let C be a clique in the conflict graph GC derived from a state-transition graph D.
The associated clique cut

∑
i∈C

∑
a∈δ−(i) ya ≤ 1 is a valid inequality for model LP(F (D)).

Proof. By construction of GC , each pair of nodes i, j ∈ C has at least one common visited location
(say u) in their associate states, and there is no directed path between i to j in D. Suppose that for
an integral optimal solution we have

∑
a∈δ−(i)∪δ−(j) ya > 1. This means that location u is visited

twice, which cannot occur in an optimal solution: a contradiction.

Given GC and a set of cliques in GC , clique cuts can be easily separated for LP(F (D)) by
evaluating whether a given fractional solution violates a cut. Because a solution to the Lagrangian
model L(D,λ) is integral, we cannot directly use it to separate any cuts. In (Anstreicher and Wolsey
2009) it is shown that a weighted average of the subproblem solutions converges to an optimal primal
solution and we apply this method to identify valid inequalities.

3.7 Reduced Cost-Based Arc Fixing
Variable fixing based on reduced costs is often applied to reduce the problem size of integer pro-
grams (Nemhauser and Wolsey 1988), including the CVRP (Irnich et al. 2010, Pecin et al. 2017b).
It uses a feasible dual solution and suitably small optimality gap to set the value of a primal variable
equal to 0 (Ahuja et al. 1993, Fischetti and Toth 1989, Lodi et al. 2003). We develop an arc fixing
method for the LP(F (D)) model, using similar arguments as (Pecin et al. 2017b).

Let D = (N ,A) be a state-transition graph that contains a set of routes R′ ⊆ R. Consider a
feasible dual solution (ν, κ) to the LP relaxation of the set partitioning model (3.1) over R′, where ν
correspond to the ‘set partitioning’ constraints and κ to the ‘number of trucks’ constraint. For each
arc a ∈ A we define a ‘reduced cost distance’ rc(a) = la − νℓa

. For each node u ∈ N , we define sp↓
u

as the shortest r-u path in D with respect to the reduced cost distances, and similarly define sp↑
u to

be the shortest u-t path in D.

Theorem 3. Consider arc a = (v1, v2) ∈ A. Let v(ν, κ) be the dual solution value, and let UB an
upper bound on (3.1). If v(ν, κ) + sp↓

v1
+ sp↑

v2
+ rc(a) − κ > UB, then arc a can be fixed to have

flow 0 in F (D) and accordingly in LP(F (D)).
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Proof. Given (ν, κ), each route r ∈ R′ in the LP relaxation of (3.1) has reduced cost rc(r) =
dr−

∑n
i=1 Mirνi−κ. Each r corresponds to a path p = {a1, ..., al} in D, so rc(r) can be decomposed

into rc(r) =
∑l
i=1 rc(ai) − κ. For all p that contain arc a, let p′ be the path that corresponds to

the route r′ with lowest reduced cost. Denote rc(r′) = sp↓
v1

+ sp↑
v2

+ rc(a) − κ. Now for sake of
contradiction assume an optimal solution to F (D) has ya = 1. Then some path p′′ in D that contains
arc a will have flow of 1, so we can consider this as some xr′′ = 1 in an optimal solution to (3.1). To
construct the remainder of an optimal solution to the LP relaxation of (3.1) we can solve this LP
relaxation with constraints for locations in r′′ removed and only requiring K − 1 trucks. Because
(ν, κ) remains feasible to the dual of this updated problem and has value v(ν, κ)−

∑n
i=1 Mir′′νi−κ,

it gives a valid lower bound on (3.1) that contradicts UB, namely v(ν, κ)−
∑n
i=1 Mir′′νi−κ+dr′′ =

v(ν, κ) + rc(r′′) ≥ v(ν, κ) + rc(r′) ≥ v(ν, κ) + sp↓
v1

+ sp↑
v2

+ rc(a)− κ > UB.

Note that while Theorem 3 relies on the set partitioning model (3.1) to build the reduced cost
argument, we can use the optimal dual solution to LP(F (D)) in the application of the theorem.
When solving LP(F (D)) with a standard linear programming solver, we can use the feasible dual
from the previous iteration – which remains feasible even with cuts and separations – to fix arcs.
One important note is that these fixed arcs are reintroduced if separation happens before the next
iteration, as the change in the state-transition graph structure may disrupt previous arc fixing
arguments. When solving LP(F (D)) via its Lagrangian relaxation L(D,λ), we must ensure that we
work with a feasible dual solution. In addition, we include a dual variable for constraint (3.10) and
set it to its maximum value while ensuring dual feasibility.

3.8 Experimental Results
We use the benchmark set of CVRP instances from http://vrp.atd-lab.inf.puc-rio.br/index.
php/en/, including the new challenge set of instances from (Uchoa et al. 2017). All experiments are
run on an Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz. We use CPLEX version 22.1 (Manual
1987) as a linear programming solver and change 3.4 to ≥ to help find an initial feasible solution.
We use the package CVRPSEP (Lysgaard 2003) to heuristically find rounded capacity cuts and
strengthened comb inequalities when given a fractional primal solution. At each iteration we add
at most 10 robust capacity cuts and 5 strengthened comb inequalities, using the most violated ones
possible. We use Cliquer (Österg̊ard 2002) to heuristically find large weighted cliques in the conflict
graph used to derive clique cuts.
Comparing Column Elimination and Column Generation. We compare column generation
over Pq with q = 2 with column elimination starting from the Pq with q = 1 state-space relaxation
and eliminating cycles of size 2. Doing so, the final bounds are the same, which allows us to compare
how quickly column generation and column elimination reach the optimal bound. We implement
a vanilla version of column generation that starts with a small set of greedily chosen routes and
solves the pricing problem as shortest paths through the pre-compiled state-transition graph for Pq
with q = 2. We compare column generation not including and including time to compile the state-
transition graph (CG-a, CG-b), column elimination using CPLEX (CELP), and column elimination
using a subgradient method over the Lagrangian dual (CELAG). We run each method for 3,600
seconds over benchmark sets A, B, E, F, M, P. We remove instances when the state-transition graph
for Pq with q = 2 does not finish compiling. Arc fixing uses the best known solution as an upper
bound and is used in CELP but not in CELAG. Lower bounds for column generation are computed
before termination as in (Wolsey 2020). Figure 3.4.a is a performance plot of the number of instances
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Figure 3.4: a) Comparing column generation over Pq for q = 2 with column elimination starting
from Pq with q = 1 and using different methods to solve LP(F (D)) without any added cuts. b)
Performance plot for adding cuts to CELP and CELAG.

solved to within a 5% optimality gap in a given amount of time, extended by the number of instances
solved to larger optimality gaps. Over the given relaxation, it is evident that column elimination
with the different methods can work appropriately and be competitive with column generation.
Evaluating the Impact of Cuts. We compare solving column elimination using CPLEX with
and without cuts (CELP CUT, CELP) and using the Lagrangian method with and without cuts
(CELAG CUT, CELAG). Figure 3.4.b is a performance plot for solving the instances up to 5% as
in the last experiment. Figure 3.4.b shows how cuts greatly improve column elimination when using
CPLEX as the LP solver, and benefit when solving the Lagrangian reformulation but not as much.

We then compare the performance of CELP CUT with one class of cuts removed at a time:
without the rounded capacity cuts (CELP NORCC), without the strengthened comb inequalities
(CELP NOCOMB), and without the clique inequalities (CELP NOCLIQUE). Figure 3.5.a is a per-
formance plot of the number of instances solved to within a 1% optimality gap. Rounded capacity
cuts provide the most benefit, the overhead of strengthened comb inequalities sometimes outweigh
their benefit but not entirely if we more closely examine the bounds achieved for each instance, and
clique inequalities can provide some benefit later in the method when it is able to be distinguished
from separations and other cuts.
Evaluating the Impact of Arc Fixing. We consider the impact of arc fixing by removing the
feature from CELP CUT to get CELP CUT NOFIX. Figure 3.5.b is a performance plot using 1%
optimality gap. Arc fixing speeds up column elimination to find stronger bounds in less time.
Evaluating the Impact of muSSP. We evaluate the impact of using the muSSP algorithm
to solve the subproblem in CELAG by removing it in CELAG -NOMUSSP. The performance plot
using 5% optimality gap is for 64 large X instances and shows that there is a significant speedup.
We chose to use the X class here because the speedup is more pronounced on large instances.
Comparison to State-of-the-Art. Figure 3.6.b compares the state-of-the-art BCP method’s
root node lower bounds (Pecin) with the best column elimination method settings that we chose
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Figure 3.5: a) Evaluating the performance of individual cuts on CELP CUT. b) Performance plot
of CELP CUT with and without arc fixing

through experimentation (CE). For each class of problems the table gives the number of problems in
the class (NP) and the average optimality gap found at the root node over all instances. Pecin takes
less than 3600 seconds to compute its bounds for all instances except the X class where it can take
several hours. CE gaps are computed based on 3600 second runs for all classes except M, F, and X
which are given 7200 seconds. The state-transition graph did not compile for 12 X instances, so we
leave these out of the analysis. One F instance with large capacity resulted in a large diagram and
27% gap that can be reduced with more runtime. The better of the CELAG and CELP results is
used; most small instances use CELP while large instances like almost all of the X class use CELAG.
We also remove two E class instances with unconventional demand formatting.

3.9 Conclusion
We introduced a column elimination procedure for the capacitated vehicle routing problem (CVRP).
Our methods works with a relaxed set of routes that are compactly represented in a state-space
relaxation, and from which infeasible routes are iterative removed. We showed how we can use
existing route relaxations for the CVRP, such as the q-route and ng-route relaxation, to compile
good initial state-space relaxations. When the dynamic program contains exactly all of the feasible
routes, we showed that a solution to the CVRP can be found by solving an arc flow formulation over
the state-transition graph of the dynamic program. When a state-space relaxation is used, this model
yields a dual bound. To strengthen the linear programming relaxation of our model we added valid
inequalities; in particular, we showed how a class of clique cuts can be derived from the structure of
the state-transition graph. To solve the model more efficiently, we considered solving a Lagrangian
dual formulation for which we implemented a specialized successive shortest paths algorithm. In
our experimental results, we demonstrated that column elimination is a viable alternative to column
generation for the CVRP, although the best known dual bounds from the literature, obtained by
column generation with cutting-planes, are generally stronger.
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Chapter 4

Column Elimination for Arc Flow
Formulations

This chapter presents column elimination as a general framework for solving an arc flow formulation.
It is based on the work by Karahalios and van Hoeve (2024). This work introduces the notion
of a relaxed dynamic program which is used to develop a general conflict refinement algorithm.
Additionally, this work proposes a method for embedding column elimination in a branch-and-bound
framework. Finally, an experimental evaluation shows that column elimination can be competitive
with or outperform state-of-the-art methods on various problem domains. Specifically, we find that
column elimination closes five open instances of the graph multicoloring problem, one open instance
with 1,000 locations of the vehicle routing problem with time windows, and six open instances of
the pickup-and-delivery problem with time windows.

4.1 Introduction
The computational revolution in integer programming solvers over the last decades has enabled the
ability to solve problems with hundreds of thousands of integer variables in reasonable time. It has
expanded the application of this powerful technology from strategic planning problems to detailed
operational decision making and even real-time use cases. For several important problem domains,
however, general integer programming does not scale to the requirements demanded by the applica-
tion. Examples include vehicle routing problems such as last-mile delivery, complex multi-machine
scheduling applications, and airline crew scheduling. In such cases alternative methods including
Benders decomposition, branch-and-price, or constraint programming can be more effective, provid-
ing a different problem representation and associated solution methodology.

In this work, we present column elimination that integrates ideas from dynamic programming,
decision diagrams, network flows, and linear and integer programming. The starting point of the
framework is a problem representation that is similar to that of column generation, i.e., in which a
variable (or a column) represents a specific combinatorial structure such as a route or a schedule.
A column formulation lists all possible variables and then selects an optimal subset of columns that
satisfies the constraints. Because column formulations are, in general, exponentially large, we pro-
pose to represent a relaxation of the columns. While this may seem counterintuitive, the relaxation
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can be represented compactly as a state-transition graph that implicitly represents an exponential
number of columns but leads to a polynomial-sized arc flow model. In this representation, a column
corresponds to a path in the state-transition graph. Because we work with a relaxation, the solution
to the arc flow model may contain infeasible columns, or paths, which are iteratively removed from
the state-transition graph until an optimal feasible solution is found.

This iterative method was first introduced by van Hoeve (2020a, 2022) as an alternative to
branch-and-price to solve the graph coloring problem; Karahalios and van Hoeve (2022) present an
improved variant that uses a portfolio of variable orderings to construct the directed acyclic graph.
The method was subsequently applied to compute dual bounds for the traveling salesperson problem
with a drone (Tang 2021, Tang and van Hoeve 2024). That work also introduced a subgradient
descent method to solve the linear programs more efficiently. The term ‘column elimination’ was
first mentioned in (van Hoeve and Tang 2022) to describe the method and draw the parallel with
column generation. Lastly, Karahalios and van Hoeve (2023b) apply column elimination to find
dual bounds for the capacitated vehicle routing problem, including the addition of cutting-planes,
reduced cost-based variable fixing, and an improved subgradient descent method.

Contributions We present a generalized framework of column elimination for solving integer pro-
gramming problems, incorporating and formalizing the existing approaches. The formalization in-
cludes the introduction of relaxed dynamic programs and a novel conflict refinement algorithm based
on this definition. We show how to embed column elimination in a branch-and-bound framework.
Lastly, we provide a computational evaluation of our framework and find that column elimination
is competitive with or outperforms the state-of-the-art on various problem domains, as it closes
five open instances of the graph multicoloring problem, one open instance with 1,000 locations of
the vehicle routing problem with time windows, and six open instances of the pickup-and-delivery
problem with time windows, for the first time.

The chapter is organized as follows. We start by discussing related work in Section 4.2. We then
present the general discrete optimization problem setting to which we apply column elimination in
Section 4.3. In Section 4.4, we describe the underlying model of column elimination, combining
dynamic programming and integer programming. Section 4.5 introduces the iterative column elim-
ination algorithm, including the extensions cut-and-refine and branch-and-refine. We present the
subgradient method for solving large-scale problems in Section 4.6. Section 4.7 presents the three
combinatorial problems that we use as a computational case study. The experimental results are
presented in Section 4.8. We provide a summary and conclusion in Section 4.9.

4.2 Related Work
Column elimination shares many similarities with column generation, which is a well-established
computational method for solving linear programming models. Column generation was introduced
by Ford and Fulkerson (1958) to solve multi-commodity network flow problems and later generalized
by Dantzig and Wolfe (1960) for solving linear programs. The extension to integer programming is
done through branch-and-price, where column generation is embedded inside a branch-and-bound
framework (Desrosiers et al. 1984, Barnhart et al. 1998, Lübbecke and Desrosiers 2005). Branch-
and-price provides state-of-the-art results for many discrete optimization problems, including graph
coloring (Mehrotra and Trick 1996, Held et al. 2012), scheduling (van Den Akker et al. 1999, Chen
and Powell 1999, Leus and Kowalczyk 2016), and vehicle routing problems (Fukasawa et al. 2006,
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Baldacci et al. 2011b, Pecin et al. 2017b, Pessoa et al. 2018, Mandal et al. 2023).
Column generation solves a restricted master problem that contains a subset of the possible

variables. It uses the associated dual variables to solve a pricing problem to generate a new primal
variable with a negative reduced cost that can improve the master problem. Potential implementa-
tion challenges of branch-and-price include stabilization strategies to handle dual degeneracy and the
representation of (branching) cuts in the pricing problem (Vanderbeck 2005). As we will see later in
more detail, column elimination does not solve a pricing problem, and avoids these issues as a result.
On the other hand, column elimination solves network flow problems that may contain more (arc)
variables than the analogous column generation model, which uses one variable per column. Column
elimination also depends on the number of refinement iterations, as column generation depends on
the number of pricing problems solved. The relative computational benefits are therefore problem
dependent, but we show in Section 4.8 that column elimination provides state-of-the-art results on
three problem domains that have also been tackled with column generation.

Many branch-and-price methods, especially in the context of vehicle routing, rely on dynamic
programming for solving the pricing problem. As the associated state space can grow exponentially
large, state-space relaxations of dynamic programs are often used in the pricing problem, which is
equivalent to relaxing the set of columns in the linear program being solved by column generation,
thus providing dual bounds. Our work is closely related to this approach, as we also define a relaxed
set of the variables with a dynamic program. While column generation uses the dynamic program
to generate new variables via the pricing problem, column elimination uses the dynamic program
to directly define a model over the relaxed set of columns. We will discuss more similarities and
differences in Section 4.4.

Another related approach is that of arc flow formulations for integer programming (de Lima
et al. 2022). Arc flow formulations have been used successfully to model problems over directed
networks with solutions that are either a single path (Boland et al. 2017, Lozano et al. 2022, Tang
and van Hoeve 2024) or a collection of paths (Gouveia et al. 2019, van Hoeve 2022, Kowalczyk et al.
2024). A specific recent application is the use of decision diagrams to solve optimization problems,
which involves arc flow formulations, restrictions, and relaxations (Bergman et al. 2016b, Ciré and
van Hoeve 2013, Bergman and Ciré 2018); we refer to Castro et al. (2022) and van Hoeve (2024) for
recent surveys. In the previous works on column elimination, arc flow formulations were described
using decision diagrams. This work instead uses state-transition graphs of dynamic programs to
describe its networks, which are closely related to weighted decision diagrams (Hooker 2013) but
offer a more generic modeling environment.

Column elimination works by solving iteratively strengthened discrete relaxations. Similar meth-
ods have been proposed for arc flow formulations, including iterative aggregation and disaggrega-
tion (Clautiaux et al. 2017), dynamic discretization discovery (Boland et al. 2017), and in the context
of column generation, decremental state-space relaxation or state-space augmentation (Righini and
Salani 2008, Boland et al. 2006). Column elimination differs from these methods by the flexibility in
its initial relaxations, its refinement algorithm and the use of a Lagrangian method to simultaneously
refine and solve the arc flow formulation.

4.3 Problem Statement
Column elimination solves discrete optimization problems of a particular form. The form is a
generalization of finding a minimum-cost sequence of elements from a finite set of feasible sequences,
which appears, e.g., in discrete dynamic programming (Bellman 1957), domain independent dynamic
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programming (Kuroiwa and Beck 2024), and decision-diagram based optimization (Bergman et al.
2016b). Here, the problem is to find a minimum cost subset of sequences of elements from a set of
feasible sequences, where the set of feasible subsets can also be constrained. For our purposes, we
allow the subset to contain multiple copies of the same sequence. We assume the cost of a subset of
sequences is equal to the sum of the costs of individual sequences.

Formally, let U be a universe of elements and let S be a set of ordered sequences of elements in
U , each with arbitrary but finite length. The discrete optimization problem is:

(P) min
X⊆S

{∑
x∈X

f(x) : C(X) = 1
}

(4.1)

where X represents the decision variable ranging over subsets of S, function C : 2S → {0, 1}
defines feasible subsets (also considering multisets), and f : S → R is a cost function over S.
A main assumption of our model is that the function C can be represented as a conjunction of
constraints with the following form. Each constraint is defined by a function γ : S → R that
associates an additional ‘cost’ with each sequence and a comparison operator ◦. Each constraint
has the form

∑
x∈X γ(x) ◦ b. Denote Γ = {(γj , ◦j , bj)}mj=1 as the set of these constraints. We

assume that the constraint function can be written as a conjunction of these new constraints, i.e.,
C(X) = ∧mj=1(

∑
x∈X γj(x) ◦j bj).

Many discrete optimization problems can be naturally described in this form. For example,
consider the CVRP from Chapter 3.
Example 4.3.1. Let U = {0, 1, . . . , n} and let S be the set of all (feasible) routes. The function f
is a mapping from routes to their distances. The constraints C restrict the subset of routes to have
cardinality K and to visit all locations, which can be translated to the following constraints in Γ. To
ensure that each location is visited, we define a constraint for each i ∈ {1, . . . , n} by (γi,=,1) where
γi(x) = Ji ∈ xK, and J·K denotes an indicator function. To ensure that each subset has K routes, we
define a constraint by (γn+1,=,K) where γn+1(x) = 1 for all x ∈ X.

Also, as a special case, observe that any integer linear programming problem can be represented
in the form of P. Consider the integer program min

η∈Zn
{αTη : Aη ≥ β, ℓ ≤ η ≤ u}, where α ∈ Rn,

A ∈ Rm×n, β ∈ Rm, ℓ ∈ Zn, and u ∈ Zn. We define the set of elements as the set of integers
from the smallest lower bound to the largest upper bound, i.e., U = {mini∈[n] ℓi,mini∈[n] ℓi +
1, . . . ,maxi∈[n] ui}. Define S = {[x1, . . . , xn] : ℓi ≤ xi ≤ ui, xi ∈ Z,∀i ∈ {1, . . . , n}} for a fixed and
arbitrary ordering of the variables x. In this case, each sequence in S is of the same length n. The
cost function is f(x) =

∑n
i=1 αixi. The constraints C ensure that one sequence is chosen and that

Aη ≥ β, which can be written in the form of Γ. To ensure that Aη ≥ β, we define constraints for
each j = 1, ...,m by (γj ,≥,βj) where γj(x) =

∑n
i=1 Ajixi. To ensure one sequence is chosen, we

define a constraint by (γm+1,=,1) where γm+1(x) = 1 for all x ∈ X. While this shows that column
elimination can, in principle, be applied to integer programs of this general form, we do not expect
this to be efficient unless we can exploit specific problem structures when defining problem P. This
will be discussed in the next section.

4.4 Modeling
Column elimination solves P via a particular modeling framework that combines dynamic pro-
gramming and integer programming. We use a dynamic program to represent S, f , and the cost
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functions in Γ. Then, an integer linear program is defined over the state-transition graph of the
dynamic program to find the minimum cost subset of feasible sequences. The model resembles a
common decomposition of the problem into an integer linear programming master problem and a
dynamic programming pricing problem, used in column generation. In this section, we detail the
model and describe relaxations of the model that are used in column elimination.

4.4.1 Dynamic Program
The set of sequences of elements S, the cost function f , and the cost functions in Γ are modeled
with dynamic programming. It is always possible to construct a dynamic program that encodes S
with an arbitrary value function over the sequences (Hooker 2013). This can directly be extended to
multiple value functions, in our case f and the cost functions in Γ. To see this, consider constructing
a dynamic program as a tree where there is a leaf node for each sequence; the costs can all be placed
on the final transition. While that construction is theoretical, in practice it is often the case that a
dynamic program can compactly represent the set of sequences with their associated costs.

So, we model S, f , and the cost functions in Γ by constructing a dynamic program P = (S, h, c,G)
with the following properties. First, the set of solutions to P must be equal to S. Second, for
each solution x ∈ S equivalent to a solution [(s1, u1), . . . , (sk, uk)] in P , we require that f(x) =∑k
i=1 c((si, ui)) and γj(x) =

∑k
i=1 gj((si, ui)) for each j = 1, ...,m. As mentioned above, it is always

possible to construct a dynamic program with these properties.

4.4.2 Integer Linear Program
The optimization model that column elimination solves is an integer linear program defined over
a network representation of P . The network representation is known as a state-transition graph,
which is a directed acyclic graph where each state is represented by a node and each transition is
represented by an arc. Given a dynamic program P = (S, h, c,G), we define its state-transition
graph as D = (N ,A) with node set N and arc set A. For each state s ∈ S we introduce a node
in N . For each transition h(si, u) = sj , we define an arc in A from the node for si to the node for
sj . Parallel arcs are distinguished by the transition element u. For ease of notation, especially for
function inputs, we use nodes and states interchangeably, and we use arcs and state/element pairs
interchangeably. This defines a one-to-one correspondence between sequences in S and directed r-t
paths in D.

The model is a constrained network flow problem over D. For each arc a ∈ A, we introduce a
decision variable ya. The model is as follows.

F : min
∑
a∈A

c(a)ya (4.2)

s.t.
∑
a∈A

gj(a)ya ◦j bj ∀ j ∈ {1, . . . ,m} (4.3)∑
a∈δ+(s)

ya −
∑

a∈δ−(s)

ya = 0 ∀ s ∈ N\{r, t} (4.4)

ya ∈ Z+ ∀ a ∈ A (4.5)

The objective (4.2) is to minimize the sum of the costs of the flows on arcs used in the solution. Con-
straints (4.3) are linear constraints using the additional cost functions from G with the comparators
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and right-hand side values from Γ. Constraints (4.4) are flow conservation constraints, where δ+(s)
and δ−(s) are the sets of outgoing and incoming arcs respectively for a node s ∈ N . Constraints (4.5)
are nonnegativity and integrality constraints. We prove the correctness of the model in Theorem 4.

Theorem 4. The optimal solution value of F is equal to the optimal solution value of P.

Proof. We start by showing that the set of solutions to F is equal to the set of solutions to P.
Consider an optimal solution to F . The solution adheres to the flow conservation constraints (4.4)
and integrality constraints (4.5), so by the flow decomposition theorem, the solution can be converted
into a set of r-t paths (Ahuja et al. 1993). Each r-t path uses a set of arcs, equivalent to a sequence
x ∈ S. Let X be the set of these sequences (with multiplicity), and let A be the union of these
sets of arcs (with multiplicity). The solution is feasible, so

∑
a∈A gj(a) ◦j bj for each j = 1, ...,m.

By construction of the dynamic program, each x ∈ S corresponds to an arc set A′ such that
γj(x) =

∑
a∈A′ gj(a) for each j = 1, ...,m. So,

∑
x∈X γj(x) ◦j bj . Thus, C(X) = 1. The reverse of

this argument shows that X ⊆ S can be converted into a solution to F . To finish the proof, we
show that each X ⊆ S has the same cost in F and P. By construction of the dynamic program,
each x ∈ S corresponds to an arc set A′ such that f(x) =

∑
a∈A′ c(a). So, for a solution X ⊆ S

corresponding to an arc set A′ (both with multiplicity),
∑
x∈X f(x) =

∑
a∈A′ c(a).

4.4.3 Model Relaxations
Column elimination works by solving relaxations of F that are created by replacing P with re-
laxations of P . The literature contains two types of relaxations of dynamic programs. First, a
state-space relaxation maps each state into a smaller state space such that predecessor states are
conserved and each transition cost is the minimum cost of all equivalent transitions in the preimage
of the mapping (Christofides et al. 1981b). Second, in the decision diagram literature, relaxations
are created by merging non-equivalent states and reasoning about the transitions to retain for the
resulting state (Bergman et al. 2016b). The key properties in both types of relaxations are that the
relaxed dynamic program represents a superset of the sequences in the original dynamic program,
and has a cost for each sequence that is less than or equal to the cost in the original dynamic
program. We will present a generalized notion of a dynamic program relaxation, which is based on
these properties:

Definition 1. Let P1 and P2 be dynamic programs with solution sets S1 and S2, solution costs that
are defined by the functions f1 and f2, and additional costs defined by {γ1j}mj=1 and {γ2j}mj=1 with
constraint operators {◦j}mj=1 and right-hand side values {bj}mj=1. P2 is a dynamic program relaxation
w.r.t. P1 if S1 ⊆ S2, f1(x) ≥ f2(x) for all x ∈ S1, and γ2j(x) ◦j γ1j(x) for all j = 1, ..,m and for all
x ∈ S1.

State-space relaxations and relaxed decision diagrams both yield relaxed dynamic programs. We
show in Appendix A how Definition 1 differs from the definition of a state-space relaxation.

We use a dynamic program relaxation to create a relaxation for the exact model F . Let P ′ =
(S′, h′, c′, G′) be a dynamic program relaxation w.r.t. P . Let S ′ be the set of solutions in P ′, let f ′

be the cost function represented by P ′, and let {γ′
j}mj=1 be the additional cost functions. We define

F ′ as the model (4.2)-(4.5) based on P ′. Theorem 5 shows that F ′ is a relaxation of F .

Theorem 5. F ′ is a relaxation of F .
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Figure 4.1: Pure column elimination for solving F .
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Figure 4.2: Column elimination for solving LP(F ).

Proof. Because P ′ is a dynamic program relaxation w.r.t. P , the set of solutions (sequences) to P ′

is a superset of the set of solutions to P , i.e., S ⊆ S ′. Recall from the previous proof that a solution
to F (or F ′) can be mapped to a set of sequences X ⊆ S (or X ⊆ S ′). So, for each X ⊆ S that is
feasible to F , X is feasible to F ′ because X ⊆ S ⊆ S ′ and

∑
x∈X γ

′
j(x) ◦j

∑
x∈X γj(x) ◦j bj for all

j = 1, ...,m, and the objective function value is relaxed, i.e.,
∑
x∈X f(x) ≥

∑
x∈X f

′(x).

In practice, it is convenient when the functions in G only rely on the transition element from the
input, and not the state, except the root state r. Then, we can use G′ = G in a dynamic program
relaxation. This is the case for the CVRP model in Chapter 3.

4.5 Column Elimination
In this section, we describe column elimination for solving F . The main idea of column elimination is
to start with an initial relaxation of F , and to iteratively strengthen the relaxation by updating the
underlying dynamic program relaxation. The algorithm works by first solving the linear program
relaxation of F , which we denote LP(F ), and then solving F . The purpose of solving LP(F ) is
to efficiently strengthen the model relaxation and to achieve useful bounds, before trying to solve
integer programs. At iteration i, we denote the model relaxation as Fi, which is created by Pi that
represents the set of sequences Si. Below, we describe each step in more detail.

4.5.1 Solving the linear programming relaxation LP(F )
Column elimination solves LP(F ) by solving the linear programming relaxations of a series of im-
proving relaxations, as shown in Figure 4.2. We next detail each of the steps of the algorithm.
Initializing a Relaxation: Given a model F , the first step is to create an initial relaxation F1.
This is done by defining a dynamic program relaxation w.r.t. P , denoted as P1. The choice of
initial relaxation can affect the performance of the algorithm, as there is often a tradeoff between
the strength of a dual bound generated by F1 and the number of variables in F1, which affects the
time required to achieve the dual bound.
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Solving LP(Fi): After setting up an initial relaxation, column elimination enters a loop of solving
LP(Fi) at each iteration i, decomposing the solution into a set of paths, and refining conflicts. To
solve LP(Fi), column elimination can use an off-the-shelf linear programming solver or a subgradient
method to solve an equivalent Lagrangian reformulation, which we describe in Section 4.6.
Path Decomposition: The solution to LP(Fi) is decomposed into a set of sequences Xi ⊆ Si.
Because Fi is a (constrained) network flow on a directed acyclic graph, such a path decomposition
is known to exist (Ahuja et al. 1993), although it may not be unique for a given solution. If there
exists a sequence x ∈ Xi such that x /∈ S, then x has a ‘conflict’. Otherwise Xi is an optimal solution
for LP(F ). A conflict can also be due to a sequence having a relaxed cost in Fi, but for simplicity
we will only consider a conflict as an infeasible sequence.
Conflict Refinement: The conflict refinement algorithm removes a conflict from Pi to create a new
dynamic program relaxation w.r.t. P . Because the path decomposition may return multiple paths
with conflicts, all of these can be used to refine the dynamic program relaxation. In our experimental
results, however, we only remove one conflict at each iteration. We introduce Algorithm 1 as a general
conflict refinement algorithm and prove its correctness. Similar refinement algorithms exist in the
literature on decision diagrams (Hadzic et al. 2008, Ciré and Hooker 2014). There are more efficient
problem-specific conflict refinement algorithms, such as the one for graph coloring in van Hoeve
(2022), which uses terminology from decision diagrams. The description of the general algorithm is
written in terms of updating the dynamic program (relaxation).

We describe Algorithm 1 as follows. The intuition is that the sequence is followed through the
relaxed dynamic program, and at each ‘relaxed’ state, the ‘correct’ state from the exact dynamic
program is created along with its transitions and costs which are copied from the relaxed state, the
incoming transition is changed to this new correct state, and finally the correct state information is
used to remove any infeasible transitions. In more detail, Line 1 creates Pi+1 as a copy of Pi. Line 2
sets a ‘current state’ scurr as the root state r ∈ Si+1. Line 3 begins a loop that iterates over the
indices of elements in the conflict x. Lines 4 to 8 check the set of subsequences from r to scurr in
P ′ to see if any of these subsequences are feasible in P when appended with the next element xj
in the conflict. If none are feasible, then the transition from scurr with xj can be removed without
removing any feasible sequences in S, but it does remove the conflict x. In detail, Line 4 creates
a set of states in P that are found by taking any possible transition from r to scurr in P ′, where
S−scurr
i+1 represents the set of these transitions and P [y] represents the state in P found by starting

from r and taking the transitions in y. Line 5 finds the set of feasible decisions from any of those
states. Line 6 checks if the next element in the sequence xj is not in the set of feasible decisions.
Line 7 filters out the transition, indicated by the notation of setting the transition function to −1,
and Line 8 returns the updated dynamic program relaxation. Otherwise, Lines 10 to 18 create a new
state which copies all of the information from the next state (found by the transition of scurr with
element xj), which maintains all of the postsequences from the next state to t, but only [x1, ..., xj ]
as a presequence from r to the new state. The uniqueness of the solution in Si ensures that by the
end of the algorithm the conflict x is removed. In detail, Line 10 finds the next state by taking the
transition using scurr and xj . Line 11 creates a new state. Lines 12 to 16 copy the transitions and
costs from the next state to this new state. Line 17 changes the transition from scurr to the next
state, to the newly created state. Line 18 updates scurr to the new state.

Each step of the algorithm is straightforward to perform, and the step requiring the most com-
putation is in Line 4 which requires considering all paths in a directed acyclic graph from the root
to a node. In practice, this computation can be avoided by using information stored in each state to
directly check the condition in Line 6. In our experiments, we use problem-specific conflict refine-
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ment algorithms that avoid creating a new node and new transitions in Lines 10 to 16 by instead
using an existing node and transitions. This is done by relying on the structure of the relaxation in
terms of its states, transitions, and costs to ensure that a dynamic program relaxation is maintained.
We note two possible disadvantages of using existing nodes. First, updating a transition to equal an
existing node may introduce infeasible sequences in Pi+1 that were not solutions to Pi, because it
combines presequences from the root that use the new transition to reach the existing node with the
set of postsequences from the existing node to the terminal. Second, updating a transition to equal
an existing node may introduce a cycle into the relaxed dynamic program; in some experiments we
circumvent this by including a counter as in Horn (2021). In our experiments, we find that the
advantages of maintaining a smaller network flow formulation outweigh the potential disadvantages.
We prove the correctness of Algorithm 1 as Theorem 6.

Algorithm 1 Conflict Refinement Algorithm
Input: A dynamic program P = (S, h, c,G), a dynamic program relaxation Pi = (Si, hi, ci, Gi) with
initial state r, and a conflict x = [x1, . . . , xk] ∈ Si.
Output: Pi+1

1: Pi+1 := (Si+1, hi+1, ci+1, Gi+1) = (Si, hi, ci, Gi)
2: scurr = r
3: for j = 1, . . . , k do
4: S− =

⋃
y∈S−scurr

i+1
{P [y]}

5: US− =
⋃
s∈S−{u : h(s, u) ̸= −1}

6: if xj /∈ US− then
7: hi+1(scurr, xj) = −1
8: return Pi+1
9: else

10: snext = hi+1(scurr, xj)
11: snew = createState()
12: for all u ∈ U do
13: hi+1(snew, u) = hi+1(snext, u)
14: ci+1(snew, u) = ci+1(snext, u)
15: for all gj ∈ Gi+1 do
16: gj(snew, u) = gj(snext, u)
17: hi+1(scurr, xj) = snew
18: scurr = snew

Theorem 6. Algorithm 1 outputs a dynamic program relaxation w.r.t. P , called Pi+1, such that
Pi is a dynamic program relaxation w.r.t. Pi+1 and x /∈ Si+1.

Proof. First, we show that Pi+1 is a dynamic program relaxation w.r.t. P and that Pi is a dynamic
program relaxation w.r.t. Pi+1. To start, Pi+1 begins as a copy of Pi. The algorithm only updates
Pi+1 in Line 7 and Lines 10 to 17. In Line 7, a transition is made infeasible, which can only remove
solutions from Pi+1, and only does so if the condition on Line 6 is met, which is equivalent to
checking that no feasible solutions in P are removed. In Lines 10 to 16, a new state is created that
is a copy of the next state found by starting at scurr and transitioning with element xj . Because
the transition function outputs, costs, and additional costs are all copied, when Line 17 updates the
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transition from scurr with xj to be this new node, no solutions or solution costs change in Pi+1. So,
the only changes from the solutions to Pi are that sequences not in S can be removed from Pi+1,
which proves that Pi+1 is a dynamic program relaxation w.r.t. P and that Pi is a dynamic program
relaxation w.r.t. Pi+1. Next, we prove that x /∈ Si+1. The key observation is that at each step of
the algorithm, Pi+1 has exactly one presequence starting from r and transitioning to scurr. In the
first iteration this is trivially true. After that, scurr is always updated to snew, which is a new state
that is only reachable by the previous scurr. Thus, in the worst case, by the final iteration the only
presequence to scurr is [x1, ..., xk−1] and then the transition with element xk is infeasible in S, so it
will be removed in Line 7.

To conclude this subsection, we prove the correctness of the column elimination algorithm for
solving the linear programming relaxation of model F . Assume that the initial dynamic program
relaxation has a cost function f ′ and additional cost functions {γ′

j}mj=1 such that for each x ∈ S,
f ′(x) = f(x) and γ′

j(x) = γj(x) for each j = 1, ...,m.

Theorem 7. Column elimination solves LP(F ) in a finite number of steps.

Proof. Column elimination begins with a valid relaxation F1. At each iteration i, column elimination
solves LP(Fi), and if there is a conflict, it is removed with Algorithm 1. By Theorem 6, removing
a conflict from Pi creates a new dynamic program relaxation w.r.t P , denoted Pi+1, such that
S ⊆ Si+1 ⊆ Si. There can only be a finite number of conflict refinements before Si = S, because
S1 and S are both finite and at least one solution is removed from Si by Algorithm 1. Also, at
each iteration of column elimination, each sequence x ∈ S will have costs f(x) and gj(x) for all
j = 1, ...,m, because Algorithm 1 does not update the costs of these sequences and the assumption
that this holds for the initial dynamic program relaxation. So, if a solution to LP(Fi) has no conflicts,
then is also an optimal solution to LP(F ).

4.5.2 Solving the integer programming model F

We describe three ways of solving the integer programming model F using column elimination.
The first is a pure column elimination approach that extends column elimination for solving LP(F )
by iteratively solving integer programs Fi (at iteration i) with an off-the-shelf integer programming
solver. The second approach, cut-and-refine, augments the approach for solving LP(F ) with cutting-
planes. The third approach, branch-and-refine, embeds the linear programming relaxation LP(F )
within a branch-and-bound search.

Pure column elimination

The pure column elimination approach extends column elimination for solving LP(F ) by continuing
the iterative procedure, but at each iteration i solving Fi instead of LP(Fi). The first step is to solve
LP(F ), which strengthens the initial relaxation. Then, the algorithm iteratively solves strengthened
relaxations of F as integer programs. The framework is shown in Figure 4.1.

To solve Fi, column elimination uses an off-the-shelf integer programming solver. This foregoes
the need to develop problem-specific cuts or branching rules, although we show how to incorporate
these in the next section. Conflicts are identified and refined in the same way as for solving LP(F ).

There are two advantages to solving LP(F ) before solving F . First, a solution to LP(Fi) may
contain conflicts that also appear in an optimal solution to Fi, but LP(Fi) is easier to solve. Second,
a solution to LP(Fi) provides a lower bound, which is likely weaker than the optimal solution value
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Figure 4.3: Cut-and-refine for solving F .

to the integer relaxation Fi, but again it is easier to obtain. Linear programming lower bounds are
useful to reduce the size of the problem by a method called variable fixing, which we describe in
Appendix C. We show that column elimination solves F in Theorem 8.

Theorem 8. Column elimination solves F in a finite number of steps.

Proof. Column elimination solves LP(F ) in a finite number of steps by Theorem 7. Then, by the
same logic as the proof of Theorem 7, only a finite number of conflicts can be refined before Si = S.
So, when there are no conflicts, an optimal solution to Fi is also an optimal solution to F .

Cut-and-refine

Cut-and-refine introduces cutting-planes to the column elimination algorithm by not only refining
conflicts in solutions to LP(Fi) but also adding valid inequalities to remove conflict-free solutions.
The framework is depicted in Figure 4.3. When an optimal solution to LP(Fi) is fractional, cut-and-
refine adds one or more valid cuts to remove that solution. Each cut should have a form that can
be represented even if the underlying dynamic program relaxation is changed in a future iteration.
Cut-and-refine was shown to improve the performance of column elimination on some instances of
the CVRP in (Karahalios and van Hoeve 2023b), which used problem-specific cuts. We prove the
correctness and finite termination of cut-and-refine in Corollary 2, with the assumption that cuts
are added from a finite cutting-plane procedure.

Corollary 2. Cut-and-refine solves F in a finite number of steps.

Proof. A finite number of refinements are needed to obtain F from F1. When a solution to LP(Fi)
does not contain a conflict, only a finite number of cuts need to be added before the solution either
contains a conflict or is integer-valued, because of the finite cutting-plane procedure.

Branch-and-refine

Branch-and-refine embeds column elimination in a branch-and-bound framework. The algorithm
begins by solving LP(F ) with column elimination at the root node, and then proceeds with branch-
and-bound. The branching rule must partition the set of solutions in a way that maintains the form
of the problem as P, so column elimination can solve the subproblems.

It may not be straightforward to create such a branching rule. For example, branching on a single
variable ya in a formulation Fi can be complicated after a conflict refinement, because the arc a can
be part of a different set of paths in Pi compared to the ‘same’ arc in Pi+1. Similar considerations
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apply to branch-and-price algorithms, in which branching decisions often depend on problem-specific
features. For example, for the CVRP a constraint can be imposed on the number of times that a
set of routes enters and exits a set of locations, which can either be at most twice or at least four
times, and can be expressed in the underlying dynamic program formulation. In the Appendix J we
provide an experimental study of solving the vertex coloring problem using branch-and-refine. We
prove both the correctness and finite termination of branch-and-refine in Corollary 3.

Corollary 3. Branch-and-refine solves F in a finite number of steps.

Proof. Because the set of feasible subsets in P is a finite set, any branch-and-bound tree will have
a finite number of nodes. Column elimination can solve each subproblem in a finite number of
steps.

A natural extension is to embed a cutting-plane procedure from Section 4.5.2 into the branch-
and-bound search to strengthen the linear programming relaxations. This would yield a branch-cut-
and-refine algorithm.

4.6 Column Elimination with Subgradient Descent
In this section, we propose solving the linear programming relaxation LP(F ) via a Lagrangian
reformulation with subgradient descent. A key benefit of this approach is the ability to refine conflicts
while solving the linear programming relaxation, instead of requiring an optimal solution before
refinement. This can be particularly helpful for large-scale instances for which solving the linear
program relaxations can be a computational bottleneck. We present a generalization of the single-
path Lagrangian approach by Tang and van Hoeve (2024) and the application-specific approach
by Karahalios and van Hoeve (2023b).

4.6.1 Lagrangian Model
Recall that the linear programming relaxation LP(F ) contains constraints (4.3). Without loss of
generality, we assume in this section that these constraints are of the following standard form:∑

a∈A
gj(a)ya ≥ bj ∀j ∈ {1, . . . ,m}.

We create a Lagrangian relaxation for LP(F ) by introducing a Lagrangian dual multiplier λj ≥ 0
for each j ∈ {1, . . . ,m}, as follows:

L(λ) : min
∑
a∈A

caya +
m∑
j=1

λj(bj −
∑
a∈A

gj(a)ya) (4.6)

s.t.
∑

a∈δ−(u)

ya −
∑

a∈δ+(u)

ya = 0 ∀u ∈ N \ {r, t} (4.7)

ya ≥ 0, ya ∈ Z ∀a ∈ A (4.8)
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Figure 4.4: Column elimination for solving LP(F ) using subgradient descent.

The objective function (4.6) can be rewritten as

min
∑
a∈A

caya −
m∑
j=1

λj
∑
a∈A

gj(a)ya +
m∑
j=1

λjbj =

min
∑
a∈A

(ca −
m∑
j=1

gj(a)λj)ya +
m∑
j=1

λjbj .

Each relaxation L(λ) corresponds to solving a (continuous) minimum-cost network flow problem
on a directed acyclic graph. The Lagrangian relaxation is maxλ≥0 L(λ), which has an optimal
solution value equal to the optimal solution value of LP(F ) (Geoffrion 1974). It can be solved by a
subgradient descent method (Nemhauser and Wolsey 1988). For fixed λ, the Lagrangian relaxation
L(λ) can be solved efficiently using a successive shortest paths algorithm (Ahuja et al. 1993). As a
special case, when the problem has at most unit flow on the arcs, a ‘minimum update’ successive
shortest paths algorithm can solve this problem more efficiently in practice (Wang et al. 2019). We
discuss the computational benefits of using the Lagrangian relaxation in comparison to the standard
linear programming relaxation, and the minimum update algorithm in comparison with a standard
successive shortest paths algorithm in the Appendix E.

Given an upper bound K on the number of r-t paths in an optimal solution to the Lagrangian
relaxation for a fixed λ, the following proposition gives an upper bound on the runtime. The result
is the same as Lemma 1 for the CVRP, as it also applies to the general case.

Proposition 3. For a fixed λ, L(λ) can be solved in O(K(|N | log(|N |) + |A|)) time.

4.6.2 Subgradient Descent
We next modify column elimination to incorporate solving LP(F ) with subgradient descent. At
iteration i, we denote the Lagrangian relaxation as Li(λ) where λ are the dual variables. The
updated algorithm is given in Figure 4.4. While the column elimination framework presented in
Figure 4.2 solves LP(Fi) at each iteration i, and then refines conflicts based on the optimal solution,
the framework in Figure 4.4 instead solves Li(λi) at each iteration, where λi is the value of λ at
iteration i. This allows the algorithm to use the resulting solution to the Lagrangian relaxation to
both update the dynamic program relaxation and take a step to update the dual values. We discuss
the convergence of the algorithm in Appendix D.

There are two possible advantages to using column elimination with subgradient descent. First,
the dynamic program Pi can be refined more quickly by not needing the optimal solution to LP(Fi)

45



before refining conflicts. The refinements can still be effective in removing the optimal solution to
LP(Fi), because an average of the subproblem solutions converges to an optimal solution (Anstre-
icher and Wolsey 2009). Second, column elimination can apply variable fixing at each iteration of
subgradient descent, which can accelerate the method. It is useful that subgradient descent can
try variable fixing at each step, because the result of variable fixing can vary depending on the
feasible dual solution used. Subgradient descent does not require the dual values at each iteration
to be feasible to the dual of the linear programming relaxation for the current arc flow model, so in
these cases the dual values can be ‘repaired’ to a nearby feasible solution, which can then be used
for variable fixing. In our experiments, we use a repair algorithm that iteratively finds the most
violated constraint of the constraints that were relaxed, and updates one dual value at a time until
the violated constraint is satisfied.

Two variations of column elimination with subgradient descent are given by Tang and van Hoeve
(2024): ‘LagAdapt’ and ‘LagRestart’. LagAdapt stops updating the duals after some stopping
criteria, but continues solving the Lagrangian relaxation and refining conflicts. LagRestart updates
the duals until some number of conflicts are found, then refines all of the conflicts, and resets the
subgradient descent algorithm, including the duals and iteration count, which affects the step size.
We considered these variants in our experiments, but did not see improvements.

4.6.3 Cut-and-refine with Subgradient Descent
Modifying cut-and-refine to incorporate solving LP(F ) with subgradient descent is not straightfor-
ward. Indeed, in a previous work Lucena (2005) discusses the difficulty of effectively adding cuts
during subgradient descent, within their framework called relax-and-cut. A relax-and-cut procedure
can either be ‘delayed’, meaning cuts are only identified when subgradient descent terminates, or
‘non-delayed’, meaning cuts are added during subgradient descent. Once cuts are identified, they
are added by ‘dualizing’ the cut and starting subgradient descent with the new variables. Using
the delayed approach, Karahalios and van Hoeve (2023b) added a limited number of cuts to col-
umn elimination with subgradient descent. The experiments from their work show a performance
improvement for solving capacitated vehicle routing problems.

4.7 Applications
In addition to the CVRP, we will evaluate the computational performance of column elimination on
four other fundamental combinatorial optimization problems: the vehicle routing problem with time
windows, the graph multicoloring problem, the pickup and delivery problem with time windows,
and the sequential ordering problem. We present here the problem definitions, while the associated
dynamic programming models and initial dynamic program relaxations can be found in Appendix B.

VRPTW

The vehicle routing problem with time windows (VRPTW) is a generalization of the CVRP that
introduces constraints that each location must be visited in a given time window (Toth and Vigo
2014). We modify the definition of the CVRP from Chapter 3 and introduce for each location i ∈ V
a time window [ei, li]. The definition of a route is updated to be a sequence of vertices [v1, v2, . . . , vk]
starting and ending at the depot with total demand at most Q, such that each location is visited
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during its time window. The requirement to use exactly K vehicles is relaxed. A vehicle is allowed
to wait at a location until the start of the location’s time window.

Graph Multicoloring

We define the graph multicoloring problem as follows (Gualandi and Malucelli 2012). Given an
undirected graph G = (V,E) and weights bv ∈ Z for each v ∈ V , use the minimum number of colors
possible to color each vertex v with bv colors such that adjacent vertices are not assigned any of the
same colors. Define a subset of vertices that are pairwise non-adjacent as an independent set. So, for
each color, the set of vertices assigned that color must be an independent set. The vertex coloring
problem is the graph multicoloring problem with bv = 1 for all v ∈ V .

PDPTW

The pickup and delivery problem with time windows (PDPTW) is a generalization of the VRPTW,
with the addition of precedence constraints (Ropke et al. 2007). The notation is the same as for
the VRPTW, but now the locations are partitioned into origin-destination pairs. The locations
are labeled V = {0, 1, . . . , 2n} and partitioned into the depot node 0, and sets Φ = {1, . . . , n}
and Ω = {n + 1, . . . , 2n} which represent pickup and delivery nodes respectively. For each origin-
destination pair, the demand of the destination is negative the demand of the origin. So, for each
i ∈ Φ, qi = −qi+n. A route has the same requirements as for the VRPTW, but now also includes
precedence constraints that an origin node i ∈ Φ must be visited before its corresponding delivery
node i+n ∈ Ω by the same vehicle. The problem is to minimize the total distance traveled by a set
of feasible routes that visit all of the locations.

SOP

The sequential ordering problem corresponds to the precedence-constrained (asymmetric) traveling
salesman problem. It is a special case of the PDPTW on a single vehicle, without time windows or
vehicle capacity and for which precedences are defined for a subset of pairs of locations.

4.8 Experimental Results
In this section, we provide an experimental evaluation of the computational performance of column
elimination. We first consider the impact of the various components of the column elimination
algorithm, and then give a comparison with the state-of-the-art.

4.8.1 Experimental Setup
All experiments are run on an Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz. We use CPLEX
version 22.1 with one thread and default parameters. The best-known primal solution value is input
to all solvers. For each experiment, we give each algorithm a timeout of 3,600 seconds.
Initial Relaxation: We use the following initial relaxations as defaults for each application,
unless otherwise specified. For VRPTW, CVRP, PDPTW, we follow the description in Appendix B,
starting with an initial ng-route relaxation with ρ = 2. For the VRPTW and PDPTW, we relax the
capacity constraints for instances in the classes R2, C2, RC2 and we keep the capacity constraints
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for all others (Gehring and Homberger 2002). For VRPTW and PDPTW instances, we also set
bucketing parameter ∆ equal to the minimum non-zero service time. For graph multicoloring and
vertex coloring instances, we start with the initial relaxation that is described in Appendix B.
Subgradient Descent: We make the following implementation decisions for column elimination
with subgradient descent. At each iteration k of the subgradient method, we use a subgradient γk
such that for each j = 1, ...,m, γkj = (bj −

∑
a∈A gj(a)yka) where yka is the solution to Lk(λk). We

use an estimated Polyak step size αk = ψ∗−v(λk)
||γk||2

2
where ψ∗ = LB ∗ (1 + 5

100+k ) is an estimate of
the optimal value, k is the iteration, LB is the best lower bound so far, and v(λ) is the optimal
value of Lk(λk). To update the multipliers, we set λk+1 = λk + αkγk (Bertsekas 2009). For the
VRPTW/CVRP, we use initial dual values λ1

i = 2l(0,i)
qi

Q for each j = 1, ...,m. For the SOP, we
initialize λ1

j for each j = 1, ...,m to the best known primal bound divided by the number of locations.
For vertex coloring, we initialize λ1

j = 0 for each j = 1, ...,m. We do not ‘dualize’ constraints on
the size of the subset of feasible sequences, like for the CVRP. We repair infeasible λ values using
a greedy algorithm. We store the dual values that give the largest percent of fixed arcs, and we
use these dual values for arc fixing at each iteration. We switch to using column elimination with
CPLEX when variable fixing has reduced the number of arc variables to below 100,000 or by at least
97.5% of the total arcs.
Cutting-Planes: For the VRPTW and CVRP, we give cut-and-refine the following defaults. We
use the package CVRPSEP (Lysgaard 2003) to add at most 100 rounded capacity cuts at each
iteration of column elimination. We do not add cuts during column elimination with subgradient
descent.

4.8.2 Impact of Column Elimination Components
We performed an extensive evaluation of the various components of column elimination, using the
different applications listed above for different purposes. We give details on the respective problem
domains and the computational results in the online Appendices E-J. As a summary of these results,
we report the following insights:
Subgradient Descent: Column elimination with subgradient descent performs well on VRPTW
instances, but not on vertex coloring instances. This is likely due to the (non-)stability of the primal
and dual solutions for successive iterations. (See Appendix E.)
Initial Relaxation: Larger initial relaxations are not always better. Our experimental study on
the SOP shows that an initial relaxation that includes important constraints can perform well when
the size of the state-transition graph is not too large. Otherwise, a weaker initial relaxation that
corresponds to a smaller state-transition graph performs better. (See Appendix F.)
Minimum-Update SSP: The specialized minimum-update successive shortest paths algorithm is
very effective, as it can solve the Lagrangian subproblems on average 3.7 times faster than a standard
successive shortest paths algorithm for the CVRP. (See Appendix G.)
Variable Fixing: Variable fixing is critical to solving large-scale instances. Using variable fixing
allows column elimination to solve CVRP instances on average 53% more quickly than without
variable fixing. (See Appendix H.)
Cut-and-Refine: We show for the CVRP that cut-and-refine can be effective for column elimina-
tion using a linear programming solver, but is not as effective for column elimination with subgradi-
ent descent. This is due to the challenges related to integrating cutting-planes into the Lagrangian
reformulation and subgradient descent. (See Appendix I.)
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Branch-and-Refine: Branch-and-refine can help when conflict refinement alone ‘plateaus’ at a
sub-optimal bound. We find that it solves instances of the vertex coloring problem on average 2.3
times faster than without branching. (See Appendix J.)

4.8.3 Comparison with State-of-the-Art
We next compare column elimination to state-of-the-art algorithms for solving the VRPTW, the
graph multicoloring problem, and the PDPTW. For each instance, we list the current best-known
upper bound (UB) that each algorithm takes as input. For each method, we report the lower bound
(LB) and time taken (Time (s)). For branch-and-cut-and-price methods, we give the number of
explored nodes (Nodes). For column elimination, we also report the number of column elimination
iterations (CEIt) and column elimination with subgradient descent iterations (CESIt), the number
of cuts (Cuts), and the number of refinements (CR). For multicoloring instances, we also report the
number of nodes n and edges m in the graph, an initial lower bound ω used for preprocessing, and
the best upper bound found by each method.

VRPTW

We use column elimination to solve the VRPTW instances from Gehring and Homberger (2002).
We compare the performances of column elimination and the state-of-the-art solver called VRP-
Solver (Pessoa et al. 2020), which is based on branch-and-cut-and-price. We use VRPSolver with
the default settings on the same server as the one we use for column elimination.

Before discussing the results, we consider the characteristics of the six classes of instances in the
benchmark set: C1,C2,R1,R2,RC1,RC2. For C1 and C2, the locations are generated in clusters. For
R1 and R2, the locations are randomly generated. For RC1 and RC2, some locations are clustered
and some are randomly generated. For R1, C1, and RC1, each feasible route has few customers
due to a short time horizon, which effectively removes the capacity constraint. For R2, C2, and
RC2, feasible routes can have many customers and the capacity Q is large. In fact, VRPSolver
relaxes the capacity constraint for problems in instances R2, C2, and RC2. So, we do the same
in our initial relaxations. We hypothesize that column elimination will perform better when two
characteristics of an instance hold. First, a strong relaxation of the set of feasible routes can be
compactly represented. Second, conflict refinement can quickly close the gap between the initial
relaxation and the full model. Instances with clustered locations are likely to require eliminating
routes that have cycles within the clusters, but can leave many routes relaxed that have cycles across
more than one cluster. This may allow a strong relaxation to be obtained quickly and remain over
a compact network. Similarly, instances for which we use an initial dynamic program relaxation
that does not maintain capacity in its states allows for a more compact network, so capacity values
are only needed when they are the reason a useful route in the solution to a relaxation is infeasible.
These characteristics allow the conflict refinements to strengthen relaxations. Thus, we hypothesize
that column elimination may work well on C2 instances.

The results in Table 4.1 compare the performance of column elimination and VRPSolver for C2
instances with 400 and 600 locations. The table shows that column elimination can outperform
VRPSolver on six instances. Table 4.2 shows the same comparison for three instances that column
elimination solves. Based on CVRPLib (http://vrp.atd-lab.inf.puc-rio.br/index.php/en/),
column elimination is able to close one instance and solve two others that were only recently closed
by VRPSolver in work that is not yet published. We show the full table of results for all instance
classes in Appendix K.
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Table 4.1: The performance of column elimination on VRPTW instances from Gehring and
Homberger (2002) with 400 and 600 locations. We bold the instances where column elimination
outperforms VRPSolver.

Instance VRPSolver Column Elimination
Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)
C2 4 1 4100.3 4100.3 1 852 4085.95 29 150 992 0 3600
C2 4 10 3665.1 3647.88 1 3600 3397.41 1 175 2128 0 3600
C2 4 2 3914.1 3900.22 1 3600 3815.14 1 152 2153 0 3600
C2 4 3 3755.2 3723.96 1 3600 3348.42 1 79 1021 0 3600
C2 4 4 3523.7 3486.12 1 3600 2725.34 1 51 474 0 3600
C2 4 5 3923.2 3923.2 1 971 3831.85 1 376 5034 0 3600
C2 4 6 3860.1 3860.1 1 2466 3696.11 1 291 3892 0 3600
C2 4 7 3870.9 3870.9 1 1483 3692.25 1 253 3391 0 3600
C2 4 8 3773.7 3770.24 1 3600 3553.38 1 232 3090 0 3600
C2 4 9 3842.1 3806.45 1 3600 3568.74 1 210 2714 0 3600
C2 6 1 7752.2 7719.46 1 3600 7688.34 1 391 1671 0 3600
C2 6 10 7123.9 6340.81 1 3600 6437.63 1 94 1733 0 3600
C2 6 2 7471.5 7075.15 1 3600 7177.06 1 94 1546 0 3600
C2 6 3 7215 4670.06 1 3600 5953.32 1 41 593 0 3600
C2 6 5 7553.8 7540.44 1 3600 7241.6 1 231 4427 0 3600
C2 6 6 7449.8 7400.61 1 3600 6976.78 1 168 3227 0 3600
C2 6 7 7491.3 6294.69 1 3600 6966.47 1 151 2871 0 3600
C2 6 8 7303.7 7223.09 1 3600 6753.56 1 140 2559 0 3600
C2 6 9 7303.2 5754.15 1 3600 6741.86 1 104 1834 0 3600

Table 4.2: The performance of column elimination on three difficult VRPTW instances.
Instance VRPSolver Column Elimination

Name UB LB Nodes Time (s) LB LPIt LagIt CR Time (s)
C1 10 5 42434.8 42434.8 1 1227 42434.8 5 397 7468 6224
C1 8 5 25138.6 25138.6 1 737 25138.6 4 144 3198 1340
C2 10 1 16841.1 - - 3600 16841.1 17 145 1661 10049

Graph Multicoloring

We compare column elimination to the branch-and-price method from Gualandi and Malucelli (2012)
(GM) for solving the COG graph multicoloring instances introduced in the same paper. We directly
use the results from Gualandi and Malucelli (2012) from their paper, as their code is not available.
The full table of results are presented in Appendix L.

The results in Table 4.3 show that column elimination closes five instances by obtaining an
optimal solution at termination: COG-gesa2-o, COG-misc07, COG-nsrand-ipx, COG-opt1217, and
COG-rout. Column elimination solves four of these instances without making any conflict refine-
ments. We attribute this to the initial relaxation that column elimination uses, which is not used in
the branch-and-price method by Gualandi and Malucelli (2012).

50



Table 4.3: The performance of column elimination on the five graph multicoloring instances that it
closes.

Instance GM Column Elimination
Name n m ω LB UB Time (s) LB UB LPIt CR Time (s)
COG-gesa2-o 192 144 12 12 13 3600 12 12 2 0 0
COG-misc07 410 2928 36 36 39 3600 36 36 141 581 139
COG-nsrand-ipx 13240 69510 30 - - 3600 30 30 2 0 5
COG-opt1217 1536 6528 26 - - 3600 26 26 2 0 13
COG-rout 560 2940 30 30 32 3600 30 30 2 0 0

PDPTW

We compare column elimination to a dual ascent method from Baldacci et al. (2011a) (BBM) and
VRPSolver for solving instances from Li and Lim (2001). We directly take the results from Baldacci
et al. (2011a) from their paper as their code is not available. We use VRPSolver with the default
settings and use the same server as the one we use for column elimination. The full table of results
are presented in Appendix M.

The results show that BBM outperforms column elimination on all instances, although column
elimination finds competitive bounds for many instances. In contrast, the general VRPSolver does
not find a lower bound for any instance. Because no exact method including BBM and VRPSolver
have reported results on many of the larger instances from Li and Lim (2001), we show in Table 4.4
six of these instances that column elimination closes.

Table 4.4: The performance of column elimination on six PDPTW instances from Li and Lim (2001)
that it solves that have not been reported on by an exact solver.

Instance Column Elimination
Name UB LB CEIt CESIt CR Time (s)
LC1 4 1 7152.06 7152.06 8 15 217 50
LC1 4 5 7150.0 7150.0 9 32 609 477
LC1 4 6 7154.02 7154.02 19 73 1867 3295
LC1 6 5 14086.3 14086.3 8 91 2140 1620
LC2 2 1 1931.44 1931.44 37 54 494 300
LC2 4 1 4116.33 4116.33 12 113 1123 1555

4.9 Conclusion
We introduced column elimination as an iterative framework for solving a general class of discrete
optimization problems. The framework models these problems by a minimum-cost constrained
network flow problem over the state-transition graph of a dynamic program that stores the feasible
sequences, their costs, and additional costs. We generalized earlier work by introducing the concept of
dynamic programming relaxations, and described the column elimination algorithm as an iterative
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procedure that solves increasingly stronger dynamic programming relaxations of the problem by
removing infeasible solutions. This iterative method converges in a finite number of steps to the
optimal solution. As a variant, we presented a subgradient method that uses a minimum update
successive shortest paths algorithm to solve the Lagrangian relaxation of the network flow problem.
We showed that this method can solve the Lagrangian method more efficiently, but also allows
refining the dynamic program relaxations more quickly. We also introduced cut-and-refine and
branch-and-refine as extensions of the algorithm. Lastly, we showed experimentally that column
elimination can be especially effective for large-scale instances, closing five open instances of the
graph multicoloring problem, one open instance with 1,000 locations of the vehicle routing problem
with time windows, and six open instances of the pickup-and-delivery problem with time windows.
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Chapter 5

Primal Heuristics for Arc Flow
Formulations

This chapter proposes a novel primal heuristic for arc flow formulations and studies its performance
as part of column elimination. Before this work, column elimination did not have a mechanism
for finding feasible solutions at each iteration, because it solves relaxations. The proposed primal
heuristic finds an initial solution by solving the arc flow formulation over a subgraph of the state-
transition graph. Then, the heuristic tries to improve the solution with a large neighborhood search
based on a destroy-and-repair approach. We embed the primal heuristic in column elimination and
provide a computational evaluation on three variants of vehicle routing problems. The results show
that the primal heuristic and large neighborhood search are effective for many instances.

5.1 Introduction
Primal heuristics are subroutines of exact methods that aim to find feasible solutions with good
objective values. For integer programming, generic branch-and-bound solvers use several primal
heuristics that are based on fractional solutions to linear programming relaxations. For large-scale
integer programming, branch-and-price methods use restricted master heuristics and diving heuris-
tics (Sadykov et al. 2019). So far, for arc flow formulations, feasible solutions are found by solving
restricted arc flow formulations (Clautiaux et al. 2017) and by implementing greedy heuristics (van
Hoeve 2022).

Large neighborhood search is a solution improving heuristic (Shaw 1998). Given an initial solu-
tion, the heuristic searches a neighborhood of related solutions. There are different ways to define
a neighborhood that may depend on the modeling framework. Generic large neighborhood search
methods exist for dynamic programming (Ergun and Orlin 2006), decision diagram solvers (Gillard
and Schaus 2022) and constraint programming (Mouthuy et al. 2012). This work is an exten-
sion of large neighborhood search for dynamic programming to arc flow formulations over dynamic
programs, which is more complicated due to solutions being collections of paths through the state-
transition graph that must collectively satisfy side-constraints.
Contributions. The first contribution is a generic primal heuristic for exact methods that solve arc
flow formulations. This includes a novel large neighborhood search method. The second contribution
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is a computational evaluation of the primal heuristic in column elimination on three variants of
vehicle routing problems.

The remainder of the chapter is structured as follows. Section 5.2 describes the primal heuristic.
Section 5.3 embeds the primal heuristic in column elimination. Section 5.4 gives experimental results
and Section 5.5 concludes the chapter.

5.2 Primal Heuristic
This section introduces a primal heuristic for arc flow formulations that is based on adaptive large
neighborhood search. The input to the primal heuristic is a subset of feasible sequences in S,
which is equivalent to a set of paths through the state-transition graph and induces a subgraph
of the state-transition graph. The primal heuristic finds an initial solution by solving the arc flow
formulation restricted to this subgraph. Then, the primal heuristic tries to improve this solution
with a large neighborhood search, where a neighborhood is defined as a subgraph of paths similar to
those in the current solution. The primal heuristic uses adaptive large neighborhood search, because
it successively searches larger and larger neighborhoods.

The primal heuristic is given as pseudocode in Algorithm 2. Line 1 finds an initial solution by
solving the arc flow formulation over the restricted set of sequences. This can be done with an
off-the-shelf integer linear programming solver. Line 2 sets the initial neighborhood size, denoted
by parameter k. Line 3 checks if the heuristic should continue, which can be based on total time,
time without an improvement, or if the initial ‘solveSubMIP’ cannot find an initial feasible solution.
Line 4 runs the large neighborhood search given the current solution. Line 5 checks if an improving
solution has been found. If so, this becomes the current solution and the neighborhood size is set
back to the original value in Line 6. Otherwise, the size of the neighborhood is increased in Line 8.

Algorithm 2 Primal Heuristic
Input: An arc flow formulation F for a dynamic program P , a subset of sequences R
Output: A feasible solution X

1: X = solveSubMIP(F,R)
2: k = 1
3: while shouldContinue() do
4: X ′ = largeNeighborhoodSearch(F ,X,k)
5: if f(X ′) < f(X) then
6: X = X ′, k = 1
7: else
8: k = k + 1
9: return X

We propose a large neighborhood search method that uses a destroy-and-repair approach. The
algorithm is given as pseudocode in Algorithm 3. Line 1 removes some of the elements from sequences
in the solution. Line 2 constructs a neighborhood that considers reinserting the removed elements
into the sequences or using sequences of only removed elements. Line 3 solves the arc flow formulation
restricted to the neighborhood. There are common removal strategies for large neighborhood search
methods that solve problems with solutions that are multiple sequences. The common strategies are
to remove elements randomly, based on the worst contribution to the objective function, or based
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on similarities of the dynamic programming states at the heads of the transitions. Next, we describe
the generic yet specific way of constructing a neighborhood based on the removed elements.

Algorithm 3 Large Neighborhood Search
Input: An arc flow formulation F for a dynamic program P , a solution X, a parameter k
Output: A feasible solution X

1: E = removeElementsFromSequences(X, k)
2: DX = constructSolutionNeighborhood(P,X,E)
3: X = solveSubMIP(F,DX)
4: return X

The procedure for constructing a neighborhood is given as Algorithm 4. Line 1 begins a loop
that constructs a neighborhood for each sequence individually, which are then combined to create
the output neighborhood. Line 2 creates the destroyed sequence and Line 3 constructs all sequences
that involve inserting one or more elements in E into this destroyed sequence. Line 4 aggregates the
neighborhoods, denoted as a union of subgraphs. The implementation of neighborhood constructions
uses the dynamic program to efficiently build the subgraphs; this includes feasibility checks and the
use of dominance rules. Proposition 4 gives an upper bound on the size of the neighborhood, although
in practice many of these sequences are infeasible which makes the construction more efficient.

Algorithm 4 constructSolutionNeighborhood
Input: A dynamic program P , a set of sequences X, a subset of elements E ⊆ U
Output: A set of sequences NX

1: for x ∈ X do
2: x′ = destroyedSubsequence(x,E)
3: Dx′ = constructInsertionNeighborhood(P, x′, E)
4: DX = DX ∪Dx′

5: return DX

Proposition 4. For each sequence x ∈ X, the number of sequences in the neighborhood is upper
bounded by

(|E|+1
|x|

)
2|E||E|!.

Proof. Any subset of the items in E can be inserted into the sequence, with any permutation.
An upper bound on this value is 2|E||E|!. The sequence can be inserted into each permutation,
maintaining its fixed order. So, an upper bound on the total ways to do this is

(|E|+1
|x|

)
.

5.3 Primal Heuristic in Column Elimination
This section describes how to embed the primal heuristic in column elimination. This requires
column elimination to maintain a subset of feasible sequences as input to the primal heuristic. It
also requires deciding when the primal heuristic should be run and for what duration. We give an
overview of column elimination and consider these implementation details.

Figure 5.1 shows the steps of column elimination for solving the linear program relaxation of the
arc flow formulation, LP(F ), including the primal heuristic. The primal heuristic can be embedded
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Figure 5.1: Column elimination for solving LP(F ), including the primal heuristic.

similarly in column elimination with subgradient descent. The algorithm initializes a restricted set
of sequences R1, and then adds the sequences found in the decomposition Xi at each iteration i.
These sequences may be infeasible because they come from a solution to a relaxation of the arc
flow formulation Fi defined over a relaxed dynamic program Pi. In the experimental results, we
consider adding both feasible sequences and truncated versions of infeasible sequences, which are the
longest feasible contiguous subsequence starting from the first element. We also consider rearranging
elements within a sequence before adding the sequence to the restricted set, and refer to this as an
intrasequence swap.

There is a tradeoff to using a primal heuristic in column elimination. While it may improve the
current feasible solution, it uses time that could be allotted to the other components of the column
elimination algorithm. We decide to run the primal heuristic whenever a new sequence is added to
the restricted set, i.e., when Ri ⊃ Ri−1. The primal heuristic is terminated when an improvement
has not been made for t seconds, and the large neighborhood search is run only when the initial
restricted arc flow formulation finds an improving solution.

5.4 Experimental Evaluation
This section evaluates the performance of the primal heuristic on three types of problems: the ca-
pacitated vehicle routing problem, the vehicle routing problem with time windows, and the pickup
and delivery problem with time windows. We use column elimination as our solution framework
with the algorithmic settings as in (Karahalios and van Hoeve 2023a). In particular, we use col-
umn elimination with subgradient descent and change to solving the arc flow formulations with
CPLEX when variable fixing sufficiently reduces the size of the state-transition graph. We study
key implementation decisions and compare with the state-of-the-art.

All experiments are run on an Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz. We use CPLEX
version 22.1 with one thread and default parameters. For each experiment, we give each algorithm a
timeout of 3,600 seconds. We consider two metrics for the performance of the primal heuristic. The
primal gap compares a solution X to the best known solution X∗ for an instance; it is computed as
f(X)−f(X∗)

max(f(X∗),f(X)) Berthold (2013). The relative gap measures how much the best solution found can
possibly be improved. It is based on the dual bound LB and the best upper bound UB found by
an exact method and is computed as UB−LB

UB .
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5.4.1 Impact of Implementation Decisions
We study the impact of several implementation decisions on the performance of the primal heuristic
in column elimination. The implementation decisions are the removal strategy, the time limit, which
sequences to add to the restricted set, and the large neighborhood search. The experiments in this
subsection are based on instances of the vehicle routing problem with time windows from a set of
benchmark instances (Homberger and Gehring 1999), restricted to instances of types C1 and C2
that have 200 and 400 locations.

The removal strategy in the large neighborhood search directly affects the resulting neighbor-
hoods that are searched. We consider three commonly used methods for choosing which elements
to remove. First, a random choice. Second, the elements that contribute the most to the objective
function. Third, the elements that are similar to each other as implemented in (Ropke and Pisinger
2006). We ran experiments with each removal strategy and a five second time limit. On average,
the primal gap and relative gap for the three methods were as follows: for random, 0.169 and 0.201;
for the second strategy, 0.281 and 0.305; for the third strategy, 0.209 and 0.246. So, the random
strategy performed the best.

The time limit for the primal heuristic has a tradeoff between taking time from the exact method
to explore more and larger neighborhoods. We consider three different values for the time limit for
which the primal heuristic stops after not finding an improving solution for this much time. The
values are 5 seconds, 30 seconds, and 60 seconds. We ran experiments with the random removal
strategy and each time limit. The performance after 300 seconds of runtime is different than for the
full 3600 seconds. Namely, after 300 seconds, the average primal gap and relative gap for the three
time limits were as follows: for 5 seconds, 0.27 and 0.348; for 30 seconds, 0.306 and 0.411; for 60
seconds, 0.353 and 0.466. So, the 5 second timeout performed best. However, after 3600 seconds,
the average primal gap and relative gap for the three time limits were as follows: for 5 seconds, 0.189
and 0.216; for 30 seconds, 0.181 and 0.23; for 60 seconds, 0.186 and 0.216. So, the longer time limits
had some minor benefits later in the runtime. This suggests that exploring larger neighborhoods
takes time, but can find better solutions than only exploring smaller neighborhoods.

The method for adding sequences to the restricted set is interesting because some of the sequences
found in the decompositions during column elimination may be infeasible. We consider the impact
of adding a feasible sequence created by truncating each infeasible sequence. We ran experiments
with a random removal strategy and 5 second time limit, with ablations of the truncated sequences
and intrasequence swaps. The results indicate that both ablations did not significantly affect the
performance, suggesting that they are not major drivers of performance.

The large neighborhood search is intended to improve the solutions found by the restricted arc
flow formulation. We ran experiments with column elimination without the primal heuristic, with
the primal heuristic but without the large neighborhood search, and with the primal heuristic and
the large neighborhood search. The experiments use the random removal strategy and a 5 second
time limit. The results in Table 5.1 show that the primal heuristic, and particularly the large
neighborhood search, are impactful.

5.4.2 Comparison with State-of-the-Art
We analyze the performance of the primal heuristic in column elimination against state-of-the-art
heuristics and exact methods. The solver PyVRP(Wouda et al. 2024), which is based on state-
of-the-art heuristics, is used as a comparison for the capacitated vehicle routing problem and the
vehicle routing problem with time windows. The solver VRPSolver (Pessoa et al. 2020), a state-of-
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Table 5.1: The average primal gap and average relative gap achieved by column elimination with
and without the primal heuristic and with and without the large neighborhood search.

CE CE+MIP CE+MIP+LNS
primal gap rel gap primal gap rel gap primal gap rel gap

C1 0.824 0.826 0.031 0.04 0.014 0.024
C2 0.878 0.888 0.681 0.698 0.325 0.377

the-art exact method for vehicle routing problems, is also used as a comparison (Pessoa et al. 2020)
for these problems. We use the parameter settings ’CallFrequencyOfRestrictedMasterIpHeur = 1’,
’MIPemphasisInRestrictedMasterIpHeur = 1’, ’DivingHeurUseDepthLimit = 1’, and ’CallFrequen-
cyOfDivingHeur = 1’ for VRPSolver. For the pickup-and-delivery problem with time windows, we
use a fixed cost of 10, 000 for each vehicle which effectively changes the objective to use the least
number of vehicles, which makes this problem more like a bin packing problem. For this problem,
a comparison is drawn with a state-of-the-art heuristic from (Ropke and Pisinger 2006). We forego
a comparison with an exact method, as we use large-scale instances that most solvers have not
provided results for and for which VRPSolver does not generate bounds after the time limit.

The experiments for the capacitated vehicle routing problem use the set of benchmark ‘X’ in-
stances from (Uchoa et al. 2017). The results in Table 5.2 show that the exact methods are far
behind PyVRP. The primal heuristic in column elimination with VRPSolver both give decent solu-
tions for instances with 100 locations. The primal heuristic in column elimination performs ok on
instances with 200 locations, better than VRPSolver likely because it only runs a primal heuristic
after solving the root node of column generation, which it often fails to do within the time limit.

Table 5.2: The average primal gap and average relative gap achieved for solving capacitated vehicle
routing problems with column elimination, PyVRP, and VRPSolver. The results are aggregated by
instances with different amounts of locations: 100− 200, 200− 300, 300− 500, and 600− 1000.

CE PyVRP VRPSolver
primal gap rel gap primal gap rel gap primal gap rel gap

X100 0.104 0.13 0.0 1.0 0.063 0.063
X200 0.147 0.184 0.002 1.0 0.599 0.598
X300-500 0.205 0.26 0.003 1.0 0.799 0.795
X600-1000 0.492 0.586 0.008 1.0 0.955 0.949

The experiments for the vehicle routing problem with time windows use the set of benchmark
instances from Homberger and Gehring (1999). The results in Table 5.3 show that the primal
heuristic can give quite good solutions for the C1 instances, which include instances with between
100 and 1000 locations. The C1 instances have tighter time windows and are usually easier to solve
than the C2 instances. It does not perform nearly as well as PyVRP (which has some negative values
because of rounding distances to integer values), but the solutions are still strong for this type. The
primal heuristic does not perform as well for the other instance classes. VRPSolver encounters the
same issue as before, where it does not run a primal heuristic before finishing column generation.
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Table 5.3: The average primal gap and average relative gap achieved for solving vehicle routing
problems with time windows with column elimination, PyVRP, and VRPSolver. The results are
aggregated by instances of types C1, C2 which are clustered instances and then separately the R
and RC instances which involve at least some randomness.

CE PyVRP VRPSolver
primal gap rel gap primal gap rel gap primal gap rel gap

C1 0.057 0.093 -0.002 1.0 0.421 0.421
C2 0.414 0.48 -0.002 1.0 0.709 0.711
R 0.723 0.793 0.003 1.0 0.764 0.765
RC 0.69 0.782 0.001 1.0 0.795 0.797

The experiments for the pickup-and-delivery problem with time windows use the set of benchmark
instances from (Li and Lim 2001). This problem has two objectives. The first is to minimize the
number of vehicles used. The second is to minimize the total travel time of the vehicles used. As
many heuristics for this multi-objective problem use an approach that removes an entire sequence and
tries to redistribute its locations, we implement an additional destroy strategy that tries removing
each sequence in addition to k random elements. The results in Table 5.4 show again that the
heuristic method clearly outperforms the primal heuristic in column elimination. However, again,
the primal heuristic finds good solutions for certain instances such as the C1 instances with 200
locations. For the other three instances types, the removal strategy of destroying an entire sequence
is beneficial.

Table 5.4: The average primal gap and average relative gap achieved for solving pickup and delivery
problems with time windows with column elimination and (Ropke and Pisinger 2006). The results
are aggregated by instance type and number of locations.

CE Random CE Random + Sequence Ropke & Pisinger
primal gap rel gap primal gap rel gap primal gap rel gap

C1 200 0.14 0.256 0.164 0.281 0.005 1.0
R1 200 0.34 0.559 0.28 0.537 0.019 1.0
C1 400 0.22 0.438 0.208 0.426 0.008 1.0
R1 400 0.493 0.73 0.413 0.703 0.036 1.0

5.5 Conclusion
This chapter introduced a primal heuristic for arc flow formulations and embedded it into column
elimination. A positive aspect of the method is that it is generic. The primal heuristic showed
good performance on instances of vehicle routing problems that had 100 or 200 clustered locations.
The results revealed that the primal heuristic can achieve decent solutions before state-of-the-art
column generation methods terminate, and suggest that it may be worth further investigating primal
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heuristics for arc flow formulations.
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Chapter 6

Cutting-Planes for Arc Flow
Formulations from Path Flow
Formulations

This chapter proposes a novel method to generate cutting-planes for an arc flow formulation that are
based on cutting-planes for the equivalent path flow formulation. It is possible for a cutting-plane
to exist for the path flow formulation for which there does not exist an equivalent cutting-plane for
the arc flow formulation, meaning that there does not exist an assignment of coefficients to the arc
flow variables that is consistent with the coefficients for the path flow variables. We devise a method
that given a cutting-plane for the path flow formulation alters the state-transition graph of the arc
flow formulation so that an equivalent cutting-plane can be formulated. The alteration method is
very similar to the conflict refinement algorithm in column elimination, but instead of removing an
infeasible sequence from a dynamic program relaxation, it updates the dynamic program to admit
additional arc costs that can be used to represent the cutting-plane. We show how the method
works for adding cutting-planes that are equivalent to Chvátal-Gomory rank-1 cuts for the path
flow formulation. We implement the alteration method to add such cutting-planes when they are
violated during column elimination and give experimental results. The results indicate that altering
the arc flow formulation to admit these cutting-planes can be beneficial.

6.1 Introduction
An arc flow formulation has an equivalent path flow formulation, which contains a variable for each
path through the state-transition graph instead of a variable for each arc. State-of-the-art solvers
often solve the path flow formulation by using branch-and-price, which relies on column generation
to handle the large number of variables. Further, these solvers deploy branch-and-cut-and-price,
which incorporates cutting-planes that are represented in terms of these path-based variables. Such
cutting-planes are often classified into two types. Robust cutting-planes can be implemented without
requiring changes to the pricing problem. Non-robust cutting-planes can reduce the efficiency of
algorithms that solve the pricing problem, and because of this they are often implemented in a
weakened form (Pecin et al. 2017b). Recently, a third type of cutting-plane was introduced, called
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a resource-robust cut, which uses states in the dynamic program of the pricing problem to deduce
coefficients that create weakened non-robust cuts (Hoogendoorn and Dalmeijer 2023). The goal
is to develop a method to represent a given cutting-plane in terms of path flow variables into an
equivalent cutting-plane in the arc flow formulation. Such a method allows these cutting-planes to
be used within column elimination.

Cutting-planes have been successfully added to column elimination in Chapter 3. However, the
work only effectively added cutting-planes that are equivalent to robust cutting-planes in column
generation. Some non-robust cuts were formulated, but the implementation did not show perfor-
mance improvements. Further, the robust cutting-planes were difficult to implement in column
elimination with subgradient descent, which is a common issue in relax-and-cut methods (Lucena
2005). We give a method for effectively adding non-robust cuts to column elimination, but we do
not yet implement the cuts in column elimination with subgradient descent.
Contributions. The first contribution is a novel method to alter the state-transition graph of an
arc flow formulation so that a cutting-plane from a path flow formulation can be represented in the
arc flow formulation. The second contribution is a description of how the method can be used to add
subset-row cuts when using column elimination to solve the capacitated vehicle routing problem.
The third contribution is a computational evaluation for instances of the capacitated vehicle routing
problem.

The remainder of the chapter is structured as follows. Section 6.2 gives preliminary definitions
and notation for arc flow formulations and path flow formulations, Section 6.3 discusses the alteration
method to allow a cutting-plane from a path flow formulation to be represented in the corresponding
arc flow formulation, Section 6.4 shows experimental results, and Section 6.5 concludes the chapter.

6.2 Arc Flow Formulations and Path Flow Formulations
In this section, we recall the general arc flow formulation from Chapter 4 and present an equivalent
path flow formulation.
Arc Flow Formulation. The general form of the arc flow formulation is a constrained network
flow problem over a state-transition graph D. For each arc a ∈ A, there is a decision variable ya
representing the ‘flow’ along that arc. The model is:

F : min
∑
a∈A

c(a)ya (6.1)

s.t.
∑
a∈A

gj(a)ya ≥ bj ∀ j ∈ {1, . . . ,m} (6.2)∑
a∈δ+(s)

ya −
∑

a∈δ−(s)

ya = 0 ∀ s ∈ S\{r, t} (6.3)

ya ∈ Z+ ∀ a ∈ A. (6.4)

Constraints (6.3) represent flow conservation at each node. The constraint set (6.2) are used to
represent side constraints, which use cost functions from the set G = {gj}mj=1 from the underlying
dynamic program.
Path Flow Formulation. The path flow formulation has an integer variable for each r − t path
in D. Let Θ be the set of paths through D and let each path θ ∈ Θ be an ordered set of arcs along
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the path. The model is:

F ′ : min
∑
θ∈Θ

(
∑
a∈θ

c(a))zθ

s.t.
∑
θ∈Θ

(
∑
a∈θ

gj(a))zθ ≥ bj ∀j ∈ {1, 2, . . . ,m}

zθ ∈ Z+ ∀θ ∈ Θ.

(6.5)

Define ϕ : R|Θ| → R|A| as a projection of feasible solutions to the path flow formulation into
feasible solutions to the arc flow formulation. Each path is a unique sequence of elements, so this
projection is uniquely defined. Let Sol(F) be the set of feasible solutions to a formulation F and
Opt(F) the optimal solution value. The proof follows from a flow decomposition and the additive
structure of the coefficients.

Proposition 5. {ϕ(z) : z ∈ Sol(F ′)} = Sol(F ) and Opt(F ′) = Opt(F )

6.3 The Alteration Method
Let α ∈ R|Θ|, β ∈ R. A cutting-plane for the path flow formulation has the form:∑

θ∈Θ
αθzθ ≤ β (6.6)

An equivalent cutting-plane in the arc flow formulation is described by a coefficient for each arc
such that the sum of the arcs for each sequence equals its coefficient in the path flow cutting-plane.
Formally, an equivalent cutting-plane in the arc flow formulation is defined by g : A → R such that∑
a∈θ g(a) = αθ for all θ ∈ Θ. It is possible that such coefficients do not exist. To see this, consider

that finding such coefficients is equivalent to solving a system of |Θ| equations with |A| variables;
this system can be overdetermined when |Θ| > |A|.

Consider the coefficients α as an additional cost for each sequence, γm+1 : S → R. There exists
a dynamic program Pα that encodes the same sequences and costs as P , but also encodes this
additional cost function γm+1. So, if we extend P to have constant arc costs gm+1 = −∞, then P
is a dynamic program relaxation of Pα. This permits the use of the conflict refinement algorithm
from column elimination to update the relaxed costs of the sequences.

We propose the following method to alter the dynamic program so that a cutting-plane from
the path flow formulation can be added to the arc flow formulation. We assume that the arc
costs for the cutting-plane in Pα are non-negative. The algorithm works by applying the conflict
refinement algorithm to each sequence with a non-zero coefficient in the cutting-plane. This updates
the dynamic program to have the appropriate arc costs for those sequences. The remaining arc costs
are set to 0 which maintains a dynamic program relaxation because of the non-negativity assumption.
The motivation for the alteration method is that for sparse cutting-planes without many non-zero
coefficients, the refinement algorithm only needs to be applied to relatively few sequences.

Algorithm 5 is pseudocode that summarizes the alteration method. Let Θ>0 be the set of
sequences with non-zero coefficients in the cutting-plane from the path flow formulation. Line 1
creates the new arc cost function for P and sets the values equal to 0. Line 2 defines the new
dynamic program that encodes the cutting-plane coefficients as an additional cost function. Line
3 loops over each sequence θ ∈ Θ>0. Line 4 updates the dynamic program relaxation by using
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Algorithm 1 so that the arcs of the sequence have the correct additional costs. Proposition 6 proves
the correctness of the algorithm and Proposition 7 shows how the modification algorithm affects the
size of the arc flow formulation.

Algorithm 5 Alteration Method
Input: Dynamic program P = (S, h, c,G) based on f , S, and Γ; cutting-plane coefficients α; set of
sequences with non-zero coefficients Θ>0
Output: Updated dynamic program Pα

1: gm+1 = 0, G = G ∪ {gm+1}
2: Pα = formulateDynamicProgram(f ,S,Γ,α)
3: for θ ∈ Θ>0 do
4: conflictRefinementAlgorithm(Pα,P ,θ)
5: return P

Let Fα,β be the arc flow formulation over the dynamic program created after running Algorithm 5,
and let F ′

α,β be the path flow formulation with the cutting-plane added.

Proposition 6. {ϕ(z) : z ∈ Sol(F ′
α,β)} = Sol(Fα,β) and Opt(F ′

α,β) = Opt(Fα,β)

Proof. Because of the assumption that the additional arc costs in Pα are non-negative, setting the
arc costs to 0 maintains a dynamic program relaxation. So, for each path θ ∈ Θ>0, the conflict
refinement algorithm can be applied. The conflict refinement algorithm returns a new dynamic
program relaxation for which θ has the correct cost, by Theorem 6. So, after these refinements, P
is a dynamic program relaxation and for each θ ∈ Θ,

∑
a∈θ g|G|+1(a) = αθ.

Proposition 7. The modification algorithm increases the size of the formulation by at most
|Θ>0||U ||K| where K is the length of the longest sequence in Θ>0.

Proof. Consider the number of arcs that can be added when the conflict refinement algorithm is
applied to a single path. A node can be added for each element in the path, and each node can have
at most U transitions.

Example 6.3.1. Consider the capacitated vehicle routing problem. The path flow formulation has
the form F ′ with a constraint for each location. The constraint can either be an equality constraint,
or equivalently two inequality constraints. Consider a Chvátal-Gomory rank-1 cutting-plane (also
referred to as a subset-row cut (Jepsen et al. 2008)) based on the less-than-or-equal-to inequality.
Let µ ∈ Rm be a vector of multipliers such that 0 ≤ µ ≤ 1. The inequality has the following form:

αθ = ⌊
m∑
j=1

µj
∑
a∈θ

gj(a)⌋ β = ⌊µT1⌋ (6.7)

There is a simplified form for the coefficient of a sequence which relies on the fact that the
coefficient only depends on the set of elements in the sequence, not on the ordering. Define a
coefficient for all sequences with the same set of locations N :

αN = ⌊
∑
j∈N

µj⌋ (6.8)
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We formulate a dynamic program Pα = (Sα, hα, cα, Gα) that describes the set of feasible se-
quences, their costs, and an additional cost for α. Recall that P = (S, h, c,G). Let the states,
transitions, and costs be the same functions, i.e. Sα = S, hα = h and cα = c. Then, define an addi-
tional cost function gm+1 : A → R to represent the cutting-plane coefficients as follows. Let gm+1(a)
equal 1 when a transitions to a state that adds a location to the visited set that increments the value
of the coefficient and 0 otherwise. Formally, the gm+1(((NG, w, v), i)) = 1 if αNG = αNG∪{i} + 1
and 0 otherwise. Let Gα = G∪ {gm+1}. Proposition 8 proves the correctness of this additional cost
function.

Proposition 8. For each θ ∈ Θ,
∑
a∈θ gm+1(a) = αθ.

Proof. Consider a particular θ. Let NG0,...,NGk be the NG sets at the states visited along θ, in
order from root to terminal. By definition of the coefficient,

∑
a∈θ gm+1(a) =

∑k
i=1 αNGi − αNGi−1 .

Because 0 ≤ µ ≤ 1, αNGi −αNGi−1 ≤ 1. So, with α∅ = 0 and αNθ
= αθ, because αNGi −αNGi−1 ≤ 1,

there must be αNθ
= αθ arcs that contribute a value of 1 along the path θ.

The alteration method can be used to add a violated cutting-plane of this form to the arc flow
formulation. This example has two nice properties for applying the alteration method. First, the
dynamic program is easy to formulate and compact; it has the same states, transitions, and costs as
P . So, given a dynamic program relaxation of P , when refinements are made to update the arc costs
gm+1, the algorithm may be able to forego creating new states and transitions and instead simply
update the cost on an arc. Second, the cutting-planes of this form that are commonly used have
multipliers with only 3, 4, or 5 non-zero values in µ. So, violated cutting-planes are often sparse,
which helps to limit the size of Θ>0.

6.4 Experimental Results
We evaluate the modification method by implementing subset-row cuts in column elimination to solve
the capacitated vehicle routing problem. We use column elimination as our solution framework with
the algorithmic settings as in 3. In particular, we use column elimination with subgradient descent
and switch to solving the linear programming relaxation of the arc flow formulation with CPLEX
once variable fixing can substantially shrink the formulation. In the analysis, we consider instances
where column elimination switches to using CPLEX, because it more clearly shows the benefit of
the cutting-planes, while an implementation that uses these cuts during column elimination with
subgradient descent is for future work.

All experiments are run on an Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz. We use CPLEX
version 22.1 with one thread and default parameters. For each experiment, we give each algorithm
a timeout of 3,600 seconds. We give as input the best known bound plus one. The relative gap
measures how much the best solution found can possibly be improved. It is based on the dual bound
LB and the best upper bound UB found by an exact method and is computed as UB−LB

UB . The
experiments are for instances of the capacitated vehicle routing problem from (Augerat et al. 1998)

The experiments consider adding rounded capacity cuts (‘RCC’) by using the software package
CVRPSEP (Lysgaard 2003) which does not require the alteration method, and three varieties of
subset-row cuts identified as useful ones in Jepsen et al. (2008) which we add by using the alteration
method. First, ‘SRC3’ cuts which have µj = 1

2 for three locations and 0 for the remaining locations.
Second, ‘SRC4’ cuts which have µj = 2

3 for four locations and 0 for the remaining locations. And
third, ‘SRC5’ cuts which have µj = 1

3 for five locations and 0 for the remaining locations. All possible
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subsets of locations are checked in order to identify violated cuts at each iteration. A maximum of
100 cuts are added at each iteration.

Table 6.2 shows the relative optimality gap for instances where column elimination solved a linear
programming relaxation of the arc flow formulation and could not find any more cuts or separations;
the relative optimality gap is computed based on this value, before switching to solving the arc flow
formulation as an integer program. Some instances where the performance does not change much
are also omitted to highlight the instances where adding cutting-planes improves the performance.
It should also be noted that cutting-planes can impact variable fixing, which can affect the lower
bound and the overall performance. The results indicate that the rounded capacity cuts often have
the greatest impact, followed by the SRC3 cuts, and then marginal benefits for SRC4 and SRC5
cuts. This might be because the separation method takes too long to check for violated SRC4 and
SRC5 cuts.

Table 6.1 gives the average the number of cuts added for each cut type, and the average difference
in the number of arcs at the end of the method. The number of cuts is not too high, except for the
SRC5 cuts, which could hinder performance. The size of the formulation grows by about 10%, which
means that many sequences are involved in these cuts. This helps to show the tradeoff between the
lower bound improvement and the possible slowdown from adding the cuts.

Table 6.1: The average difference in the number of arcs, and the average number of each type of cut
added.

RCC RCC + SRC3 RCC + SRC34 RCC + SRC345
Num Arcs Difference -0.04 0.11 0.11 0.09
Num RCC Cuts 90 90 88 90
Num SRC3 Cuts 0 248 190 158
Num SRC4 Cuts 0 0 141 74
Num SRC5 Cuts 0 0 0 410

6.5 Conclusion
This chapter discussed a method for translating cutting-planes from path flow formulations to arc
flow formulations. To demonstrate the method, non-robust subset-row cuts from the column gen-
eration literature were translated in this way. The method relies on column elimination and the
definition of a relaxed dynamic program. Experimental results show that subset-row cuts can im-
prove lower bounds in column elimination when using CPLEX to solve the linear programming
relaxation of the arc flow formulation, but the cutting-planes were not yet added to column elimi-
nation with subgradient descent. This future work could unlock column elimination to solve many
more instances, but requires some additional ideas and engineering.
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Table 6.2: The relative optimality gap for each instance. ‘SRC34’ means that both SRC3 and SRC4
cuts are added. ‘SRC345’ means that SRC3, SRC4, and SRC5 cuts are added. Values in italics
indicate that the column elimination stopped before the timeout because no more separations were
possible and no more cuts were identified for the current solution.

No Cuts RCC RCC + SRC3 RCC + SRC34 RCC + SRC345
A-n33-k6.vrp 0.013 0.002 0.0 0.0 0.0
A-n34-k5.vrp 0.039 0.005 0.0 0.0 0.0
A-n37-k5.vrp 0.017 0.005 0.001 0.001 0.002
A-n37-k6.vrp 0.023 0.009 0.005 0.005 0.005
A-n38-k5.vrp 0.044 0.01 0.006 0.006 0.006
A-n39-k5.vrp 0.026 0.005 0.003 0.002 0.001
A-n39-k6.vrp 0.027 0.009 0.004 0.004 0.004
A-n45-k6.vrp 0.014 0.003 0.001 0.001 0.001
A-n45-k7.vrp 0.019 0.004 0.002 0.001 0.003
A-n48-k7.vrp 0.019 0.002 0.001 0.001 0.001
A-n53-k7.vrp 0.015 0.007 0.004 0.005 0.005
A-n55-k9.vrp 0.014 0.004 0.002 0.002 0.002
B-n31-k5.vrp 0.068 0.079 0.079 0.076 0.075
B-n34-k5.vrp 0.041 0.005 0.005 0.005 0.004
E-n51-k5.vrp 0.009 0.007 0.003 0.003 0.005
P-n16-k8.vrp 0.016 0.006 0.002 0.002 0.002
P-n20-k2.vrp 0.023 0.007 0.0 0.0 0.0
P-n22-k2.vrp 0.007 0.002 0.0 0.0 0.0
P-n40-k5.vrp 0.014 0.005 0.0 0.0 0.0
P-n45-k5.vrp 0.015 0.007 0.008 0.006 0.008
P-n50-k10.vrp 0.014 0.011 0.002 0.002 0.001
P-n50-k7.vrp 0.016 0.008 0.0 0.0 0.0
P-n50-k8.vrp 0.026 0.023 0.015 0.015 0.018
P-n51-k10.vrp 0.012 0.008 0.0 0.0 0.0
P-n55-k10.vrp 0.021 0.019 0.01 0.009 0.01
P-n55-k15.vrp 0.021 0.017 0.007 0.006 0.006
P-n55-k7.vrp 0.022 0.017 0.014 0.015 0.025
P-n55-k8.vrp 0.023 0.015 0.015 0.014 0.014
P-n60-k10.vrp 0.01 0.007 0.002 0.002 0.001
P-n60-k15.vrp 0.009 0.006 0.001 0.002 0.001
P-n65-k10.vrp 0.01 0.006 0.002 0.0 0.004
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Chapter 7

Variable Orderings in Column
Elimination: A Portfolio Approach

This chapter studies how to choose which arc flow formulation(s) to use when applying column
elimination to solve the vertex coloring problem. The original work on column elimination used
binary decision diagrams as the state-transition graph for its arc flow formulations (van Hoeve 2022).
There are many choices of binary decision diagrams to use to create the arc flow formulation for the
vertex coloring problem, each having a different variable ordering. The experimental results showed
that the choice of variable ordering can greatly affect the performance of column elimination. We
propose a portfolio approach to selecting the best ordering among a set of alternatives. We consider
several different portfolio mechanisms: a static uniform time-sharing portfolio, an offline predictive
model of the single best algorithm using classifiers, a low-knowledge algorithm selection, and a
dynamic online time allocator. As a case study, we compare and contrast their performance on the
graph coloring problem. We find that on this problem domain, the dynamic online time allocator
provides the best overall performance.

7.1 Introduction
Relaxed decision diagrams have recently been successfully applied within a range of solution method-
ologies for discrete optimization, including constraint programming, integer linear programming,
integer nonlinear programming, and combinatorial optimization. For exact decision diagrams (e.g.,
reduced ordered binary decision diagrams), it is well known that the variable ordering greatly in-
fluences the size of the diagram (Bryant 1986, 1992, Wegener 2000). Likewise, for relaxed decision
diagrams the variable ordering is often of crucial importance for their effectiveness. For example,
Bergman et al. (Bergman et al. 2012a, 2014a) demonstrate that a variable ordering that yields a
small exact diagram typically also provides stronger dual bounds from the relaxed diagram.

In some cases, e.g., for sequential scheduling problems, the variable ordering is prescribed by the
sequential nature of the application. In most cases, however, we must design and/or select a variable
ordering that we expect to perform well. In the literature several variable ordering strategies, generic
as well as problem-specific, have been proposed. When decision diagrams are built from a single top-
to-bottom compilation, dynamic variable orderings can be very effective. For example, a recent work
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by Cappart et al. (Cappart et al. 2019) deploys deep reinforcement learning to dynamically select
the next variable during compilation. Dynamic variable orderings are less applicable, however,
to compilation via iterative refinement, in which case the ordering must be specified in advance.
Oftentimes there is no single variable ordering strategy that dominates all others, and the challenge
in practice is to select a strategy that works well for a specific instance. This is a well-studied
problem in artificial intelligence, in the context of algorithm portfolios.

There are several ways to construct an algorithm portfolio: using static or dynamic features,
formulating predictive models at the algorithm or portfolio level, predicting one algorithm to run
per instance or creating a schedule of algorithms to run, using a fixed portfolio or updating it
online (Kotthoff 2016). In this work, as we consider variable ordering strategies for relaxed decision
diagrams, our goal is to study which portfolio design leads to the best performance of the diagram.

As a case study, we consider the graph coloring problem, for which a decision diagram approach
was recently introduced (van Hoeve 2020b, 2022). It uses an iterative refinement procedure much like
Benders decomposition or lazy-clause generation, by repeatedly refining conflicts in the diagram until
the solution is conflict free. Our experimental results show several insights, at least for this problem
domain: First, even the simplest portfolio (the static uniform time allocation) can already outperform
all individual orderings. Second, predictive methods using classification models or exploration phases
can lead to more instances solved optimally. However, these methods may lead to delayed optimality
results on problem instances that are easy to solve. Third, allocating time to more than one variable
ordering can yield a solution with a unique best upper bound from one ordering and a unique best
lower bound from a different ordering. This indicates that it may be advantageous to use one variable
ordering to obtain a lower bound and another to obtain the upper bound.

7.2 Decision Diagrams
We follow the framework of Bergman, Cire, van Hoeve, and Hooker (Bergman et al. 2016a) and
introduce decision diagrams as a graphical representation of a set of solutions to a discrete optimiza-
tion problem P defined on an ordered set of decision variables X = {x1, x2, . . . , xn} and (optionally)
an objective function f(X) to be minimized or maximized.

7.2.1 Definitions
A decision diagram for P is a layered directed acyclic graph D = (N,A) with node set N and arc
set A. Diagram D has n + 1 layers of nodes, where a node in layer j represents a state associated
with variable xj . Layer 1 contains a single root node r, and layer n + 1 contains a single terminal
node t. Arcs are directed from a node u in layer j to a node v in layer j + 1 and labeled with a
decision value for variable xj . The outgoing arcs for each node must have unique labels. Hence, an
arc-specified r-t path p = (a1, a2, . . . , an) defines a complete variable assignment by setting xj to be
the label of aj for j = 1, . . . , n. We let Sol(D) be the set of solutions represented by all r-t paths
of D. We will slightly abuse notation and denote by Sol(P ) the set of feasible solutions to problem
P . We say that D is an exact decision diagram for P if Sol(D) = Sol(P ). D is a relaxed decision
diagram for P if Sol(P ) ⊆ Sol(D).

The objective function f(X) can be represented in D by appropriately associating a ‘weight’ to
each arc in the diagram. We define the weight of an r-t path as a function (e.g., the sum) of its
arc weights, and require that the weight of the path is equal to the objective value of the solution
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Figure 7.1: Constraint graph (a) and exact decision diagrams using the lexicographic variable or-
dering (b) and the ‘path’ ordering (c), for the problem in Example 7.2.1. In the decision diagrams,
dashed arcs represent arcs with label 0, while solid arcs represent arcs with label 1.

it encodes. The shortest (or longest) path in D can be computed in linear time since D is acyclic.
Such path corresponds to an optimal solution if D is exact, and yields a dual bound if D is relaxed.

We can extend the application of decision diagrams to let multiple paths in D represent the
solution to an optimization problem, as proposed in (van Hoeve 2020b, 2022). In that case, an
optimal solution can be computed as a constrained network flow. We will use this application in our
case study in Section 7.4.

7.2.2 Compilation Methods
We limit our discussion to the two most popular decision diagram compilation methods in the context
of discrete optimization (Bergman et al. 2016a): top-down compilation and iterative refinement.
Both methods rely on an underlying recursive formulation of the problem P , using states (associated
with each node in N) and labeled transition functions (represented by the arcs in A).

Top-down compilation expands the diagram one layer at the time. It considers the nodes (states)
in the previous layer, and creates all possible states according to the transition function. Equivalent
states are merged. For relaxed decision diagrams, it is typical to impose a maximum size (or ‘width’)
on the layers, in which case non-equivalent nodes may need to be merged. This compilation method
can be applied recursively in a branch-and-bound like scheme to obtain an exact solution method.

Iterative refinement alternatively starts with an initial relaxed decision diagram in which each
layer contains a single node, and all possible arcs between the nodes in subsequent layers are present.
The diagram is then iteratively refined by splitting nodes and/or removing infeasible arcs. This is the
method of choice for MDD-based constraint propagation, in which case refinement is again limited
until a maximum width is reached. It can also be applied as a stand-alone exact solution method,
by repeated computation of the optimal solution (which provides a dual bound) and refining any
constraints that are violated along the optimal path(s).
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7.2.3 Variable Ordering
As mentioned in Section 7.1, the variable ordering can have a crucial impact on the size of the
decision diagram. This is illustrated in the following example:

Example 7.2.1. Consider the following constraint satisfaction problem:

x1 + x3 ≤ 1, x2 + x4 ≤ 1, x3 + x4 ≤ 1,
x1, x2, x3 ∈ {0, 1}

The constraint graph for this problem is shown in Fig. 7.1(a). The associated exact decision diagram
following the lexicographic variable ordering (x1, x2, x3, x4) is shown in Fig. 7.1(b). In Fig. 7.1(c)
we show a smaller exact decision diagram using the path-ordering (x1, x3, x4, x2) that follows from
the constraint graph.

Finding the variable ordering that yields the smallest exact decision diagram is an NP-hard
problem (Wegener 2000). In practice, one therefore typically relies on heuristic variable ordering
strategies. An example of a problem-specific variable ordering is the maximal path decomposition
heuristic for compiling the independent sets of a graph (Bergman et al. 2012b, 2014a). It relies on an
a priori computed path decomposition of the input graph, and selects the next variable according to
this decomposition. An example of a generic variable ordering is the k-look ahead ordering (Bergman
et al. 2012b, 2014a). It selects the variable that yields the smallest-width layer when k = 1, and
evaluates a subset of k variables in general. We will present several more variable ordering heuristics
for our case study in Section 7.4.

The maximal path decomposition heuristic is static as the ordering is determined once in advance.
In contrast, the k-look ahead ordering is dynamic because the selection of the next variable is
determined during the compilation and depends on the previous choices. Likewise, the reinforcement
learning approach of Cappart et al. (Cappart et al. 2019) is a dynamic variable ordering heuristic
by design. It uses an action-value function, based on neural fitted Q-learning, to determine the best
variable to add to the ordering at each step. Due to its dynamic nature, it can however not be
effectively applied when the decision diagram is compiled using iterative refinement (as in our case
study). In our case study, we compose a portfolio of static orderings for settings where iterative
refinement is used.

7.3 Algorithm Portfolio Design
Algorithm portfolios have been studied widely in artificial intelligence, and have been shown to be
particularly effective for combinatorial optimization and Boolean satisfiability (Gomes and Selman
2001, Xu et al. 2008, Gagliolo and Schmidhuber 2011). While many variants exist, most approaches
either select one algorithm among a set of alternatives to solve a given problem, or run multiple
algorithms (in parallel or sequentially) in dedicated time schedules. Typically one needs to trade
off time for exploration (learning the performance of each method) and exploitation (executing the
selected algorithm). We refer to Kotthoff (2016) for a recent survey.

For our purposes we made a selection of four methods from the literature, which contrast offline
versus online learning, single versus multiple algorithm selection, and low-level versus high-level
knowledge utilization. We assume that we are given a set of variable ordering heuristics (each
leading to a different algorithm) and a maximum overall time limit. We explain each portfolio using
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a contrived example instance in Fig. 7.2(a). Notice how one variable ordering may have exponentially
longer runtime to reach the optimal value compared to other variable orderings.

7.3.1 Static Uniform Time Allocator
This multiple-algorithm selection approach proceeds in rounds; in round t, each algorithm is given
2t seconds to solve the problem (Gagliolo and Schmidhuber 2011). We continue until the time
limit is reached. As an example, see Fig. 7.2(b), where the optimal value of 10 will be reached
in the round of 64s once V.O. 1 has run for 20 seconds total. So, the total runtime will be
(1s+2s+4s+8s+16s+32s+5.25s)=67.25 seconds.

(a) Variable Ordering Runtimes (b) Uniform Time Allocator

Figure 7.2: An example of lower bounds for 4 different variable orderings at various runtimes, where
the optimal value is 10, and the distribution of runtimes using a uniform time allocator.

7.3.2 Offline Predictive Models Via Classifiers
This approach uses classification models to predict the optimal algorithm to run on a given problem
instance (Xu et al. 2008, Musliu and Schwengerer 2013). As input, the method requires several easily
computable features of a problem instance and logic to label the best algorithm for an instance given
performance data. These features and labels are computed for a training dataset, then discretized
using MDL with Kononenko’s criteria, and a greedy forward feature selection process. Pairwise
products are computed for this subset of features as in a similar work by Xu et al. (Xu et al. 2008).
Then, the same discretization and feature selection process is performed to obtain the final features
and labels used to train classification models. Several classification models can be applied including
Bayesian Networks (BN), Decision Trees (DT), k-Nearest Neighbor (kNN), Multilayer Perceptrons
(MP), Random Forests (RF), and Support-Vector-Machines (SVM). The trained classification model
is used to select one algorithm from the portfolio to solve a given test instance. For the example in
Fig. 7.2(a), suppose the model takes t seconds to predict V.O. 1. The total runtime will be t+ 20s.
If alternatively the model predicts V.O. 3, then the runtime will be t + 3000s. This demonstrates
two things: t affects the overall performance of the predictive model approach, and the predictive
model choosing one single variable ordering could be detrimental.

72



7.3.3 Low-Knowledge Single Algorithm Selection
This is a single-algorithm selection method that runs in two phases (Beck and Freuder 2004). An
exploration phase runs each algorithm for a time t, and then an exploitation phase chooses one
algorithm to run for the remaining time based on the results of the exploration phase. In (Beck
and Freuder 2004), three prediction rules for the exploitation phase are proposed: pcost max (select
algorithm with best lower bound), pslope mean (maximum mean of the change in the best lower
bound), and pextrap (extrapolate pcost max with pslope mean to find the maximum lower bound
at the time limit). Ties are broken by choosing the ordering with the best mean performance at the
time limit for the training data. For each prediction rule, the optimal time t to use on the testing
data is found by running t = 10, 20, . . . , 300 on the training instances and choosing the t that gives
the maximum number of optimal lower bound results. For the example in Fig. 7.2(a), suppose the
model trains for 30 seconds with each variable ordering. Using pcost max, the model would choose
the ordering with the better mean performance on the training data between V.O. 1 and V.O. 4 as
these have the highest bounds, pcost slope would choose V.O. 4 as it has the highest mean change
of 0.2 per second if we start from an offset of 10 seconds, and pcost extrap would choose V.O. 4 by
calculating the highest extrapolated value of 10 + 0.2*(timeout - 30s).

7.3.4 Dynamic Online Time Allocator
This is a multi-algorithm selection method following a dynamic online schedule (Gagliolo and
Schmidhuber 2011). It proceeds in rounds, such that round t has a limit of 2t seconds. We ini-
tially assign to each algorithm a share of the runtime. After each round, the time share for each
algorithm is updated based on a function of the problem instance features, the current runtime for
each algorithm, and the performance of each algorithm. For our purposes, we use an updating func-
tion with three parameters: maximum lower bound (lb bonus), maximum change in lower bound
(delta bonus), and a tie parameter (tie bonus) that encourages reversion to the uniform time allo-
cator. Given a time share allocation (vo1, vo2, . . . , vok) at the beginning of a round, this function
adds lb bonus to the voi for the variable ordering i with the maximum lower bound at the end of
the round. Similarly, delta bonus adds to the maximum change in lower bound from the beginning
of the round to the end of the round. In the case of any ties, the bonus is divided evenly amongst
the tied variable orderings. In the case that all variables tie for both lb bonus and delta bonus,
tie bonus is added to all voi. After adding bonuses, all voi are re-normalized so that they sum to
1. Similar to the Low-Knowledge method of (Beck and Freuder 2004), we use the training instances
to tune the parameters of the updating function to use on the test instances. For the example
in Fig. 7.2(a), the table in Fig. 7.3 shows the distribution of runtimes for each round. Suppose
lb bonus=delta bonus=tie bonus=1. Then, no bonus is given until each variable ordering runs for
1 second, where then the lb bonus and delta bonus are split between V.O. 1, V.O. 2, and V.O. 3,
creating the distribution for the 8s round. Then, V.O. 1 receives the lb bonus as it passes 4s total
runtime with a bound of 7 while V.O. 4 receives the delta bonus as it passes 2s total runtime with
a bound of 6. The next round would use the tie bonus, as no variable ordering improves in the 16s
round. This portfolio reaches the optimal lower bound at 39.8 seconds in the 32s round when V.O. 1
reaches 20 seconds of runtime.
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Figure 7.3: The distribution of runtimes using the Dynamic Online Time Allocator.

7.4 Case Study: Graph coloring
We next apply the variable ordering portfolios for decision diagrams to graph coloring as a case
study. Given a graph, the graph coloring problem is to minimize the number of colors necessary to
color all vertices such that no vertices sharing an edge have the same color.

A decision diagram approach for graph coloring was proposed in (van Hoeve 2020b, 2022), using
iterative refinement based on conflict resolution. The decision diagram represents the independent
sets (color classes) of the graph, where each layer corresponds to a vertex of the input graph. That
is, each r-t path in the decision diagram correspond to a color class defined by the vertices that
take an arc with label 1 in the path. A graph coloring solution consists of a set of color classes such
that each vertex belongs to one color class. To find such solution, we can define a network flow
optimization model on the decision diagram, that 1) minimizes the total amount of flow out of the
root node, while 2) ensuring that in each layer at least one arc with label 1 is traversed. The optimal
network flow solution thus corresponds to a collection of r-t paths that ‘cover’ all vertices. If one
of these paths contains a conflict, the decision diagram is refined accordingly, and a new network
flow solution is computed. This process iterates until a conflict-free solution is found or a stopping
criterion is met. The experimental results in (van Hoeve 2022) demonstrate that the performance
of this approach relies strongly on the variable ordering, which makes this a relevant case study for
our portfolio approach.

7.4.1 Variable Orderings
We consider the following six variable orderings, the first three of which were also studied in (van
Hoeve 2022):

Lexicographic: Order the variables as they are input into the problem.

Maximum Connectivity/Degree: Add vertices one at a time, choosing the one with the maxi-
mum number of dependencies already in the ordering, and the one with the largest degree as
a tie-breaker (van Hoeve 2020b).

DSATUR: Use the classic graph coloring heuristic from Brélaz (1979).

Maximal Paths: Use a maximal path decomposition to order the variables (Bergman et al. 2012a).
Start by considering the variables in the order they were entered. While not all vertices are in
the ordering, choose the first unchosen vertex and create a maximal path, adding vertices to
the ordering as they are added to the path, then remove that maximal path from the graph.
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Algorithm 6 Minimum Width Variable Ordering Algorithm
Input: Graph G = (V,E)
Output: Ordered list of vertices L
Definition: deg(v,G) is the degree of v in G.
L← ∅
while V not empty do
N ← argmin

v∈V
{deg(v,G)}

V ← V −N
E ← E − {(i, v) : (i, v) ∈ E, v ∈ N}
L← N :L {add N to front of L}
G← (V,E)

return L

To create the maximal path, choose an unchosen vertex that is adjacent to the most recent
vertex added to the path, or if this does not exist, add an unchosen vertex adjacent to the first
vertex in the path until there are no more possible vertices to add.

Maximal Cliques: Use a maximal clique decomposition to order the variables. Sort the vertices
from largest degree to smallest degree. Construct a maximal clique decomposition on the
graph of variable dependencies by choosing one vertex at a time, and then the first neighbor
in the adjacency list that maintains a clique if one exists. Order the vertices by starting with
the largest clique, and continue with cliques that share as many edges with the previous clique
as possible.

Minimum Width: Apply a variable ordering with minimum width, that is, the maximum number
of dependencies for a variable that come before that variable in the ordering (Freuder 1982).
The algorithm is described in Algorithm 6.

In our evaluation, we will refer to the above orderings as ‘lex’, ‘max degree’, ‘dsatur’, ‘max path’,
‘max clique’, and ‘min width’, respectively. We note that the latter two orderings have not been
applied before to decision diagram compilation, to the best of our knowledge. We give details for
constructing each type of portfolio below.

7.4.2 Algorithm Portfolios
Static Uniform Time Allocator For the uniform time allocator, the order the heuristics run in
each round is: min width, max clique, dsatur, max degree, max path, lex. This order was chosen
based on which variable orderings solved the most instances of the Dimacs benchmark set within a
3600s time limit.
Offline Predictive Models Via Classifiers We used Culberson’s random instance generator
(Culberson and Luo 1996) to generate 432 graphs. We generated 4 graphs of each type in the cross
product of n=(100, 250, 500, 1000), density=(0.1, 0.5, 0.9), embedded colorings of (0, 10, 20), (0, 25,
50), (0, 25, 100) and (0, 50, 100) for each n respectively, and variability=(0, 1) when the embedding
does not equal 0. We use 3 graphs of each type as a training set (324 graphs), and the 4th graphs as
a testing set (108 graphs). We ran each algorithm on these graphs for a maximum of 1,800 seconds.
We also used a set of 137 graphs from the coloring and clique part of the well-established Dimacs
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Challenge (Johnson and Trick 1996) as another, completely independent, test set. The Dimacs
experiments ran with a time limit of 3,600 seconds.

For the features, we calculate 50 characteristics of each problem instance. We use a subset of
the features from Musliu and Schwengerer (Musliu and Schwengerer 2013), by including only these
categories: graph size features, node degree statistics, maximal clique statistics, local clustering coef-
ficient statistics, weighted local clustering coefficient statistics, and dsatur greedy coloring statistics.
Graph Size features and node degree statistics use their common definitions. Maximal clique uses a
simple greedy algorithm for each node. Clustering coefficients use their classic definition (Watts and
Strogatz 1998), and weighted clustering coefficients multiplies each clustering coefficient for a node
by its degree. DSATUR runs the common algorithm mentioned earlier in this chapter. Problem
instances were labelled with a best algorithm based first on maximum lower bound, then best time
to the best lower bound, and then most instances solved to optimality. To simplify parameter config-
uration for the classification models, we used parameters recommended in (Musliu and Schwengerer
2013). For the BN, the maximum number of parent nodes is set to 5. For the DT, the minimum
number of objects per leaf was set to 3. For kNN, the size of the neighborhood is set to 5. For the
RF, the number of trees was set to 15. For the MP and SVM, and other remaining parameters, we
used the default settings from the Weka system (Bouckaert et al. 2016).
Low-Knowledge Single Algorithm Selection We order the variables as we did in the Static
Uniform Time Allocator, and we use the training set from the Offline Predictive Models Via Classi-
fiers to find the best parameter t. When determining the mean change for pslope mean, we consider
the interval from 10 seconds to the end of the training phase, as all variable orderings start with a
lower bound of 1.
Dynamic Online Time Allocator We order the variables as we did in the Static Uniform Time
Allocator, and we use the training set from the Offline Predictive Models Via Classifiers to find the
best set of bonus parameters.

7.5 Experimental Evaluation
All variable orderings and iterative refinement algorithms are written in C++. The data evaluation
scripts are written in Python, using a wrapper around the Weka data mining library version 1.0.6 for
the machine learning models used (Bouckaert et al. 2016). Following previous studies, we assume an
”ideal” machine with no task switching overhead (Gagliolo and Schmidhuber 2011). Therefore, our
experiments were run for each single variable ordering, and this data was compiled to simulate each
portfolio method. All experiments were run on an Intel Xeon 2.33GHz CPU with Ubuntu 18.04.
We will evaluate each algorithm (i.e., the individual variable orderings and portfolios) in terms of
their performance: how many instances can be solved within a given time limit? We first consider
the performance of the individual variables orderings, and then assess each of the four portfolio
approaches from Section 7.3.

7.5.1 Performance of individual variable orderings
Before running our portfolio methods, we confirm that none of the individual orderings always
dominates the others, and that each ordering can be the best for at least one instance. We show that
this is the case for both the Test Culberson instances and Dimacs instances through Figure 7.4(a),
which plots the frequency that a variable ordering achieved the best bound amongst all variable
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orderings within three time ranges of when the quickest variable ordering achieved that bound. For
the 108 Test Culberson instances, any one variable ordering achieves the best lower bound within 60
seconds of the quickest variable ordering to achieve this bound for less than 80 instances. Similarly,
this number is 100 of the 137 Dimacs instances.

A more detailed comparison of the individual variable orderings is given in Fig. 7.5 by presenting
their performance plots, i.e., the number of instances solved by a given time limit. We show these
plots separately for the test Culberson instances (a) and the Dimacs instances (b). The best perform-
ing individual variable orderings for the Culberson instances are dsatur and max degree (both solve
46 instances). While max degree solves 46 instances in 1200 seconds, dsatur solves 46 instances in
1740 seconds. For the Dimacs instances the min width ordering performs best (solving 54 instances).
The min width ordering also performs best overall, solving 98 instances in total compared to 96 for
the runner up max degree.

7.5.2 Experiment 1: Static Uniform Time Allocator
We included this method as a baseline comparison. Despite its simplicity, the uniform time-sharing
portfolio solves 55 Dimacs instances optimally, and solves more Dimacs instances in faster times
than all of the variable orderings individually, as can be seen in Fig. 7.5(b). This method also works
well, but not as well, on the Test Culberson instances, as presented in Fig. 7.5(a). In both cases,
there is at least one instance that a hypothetical ‘oracle’ portfolio, which selects the best variable
ordering for each instance can solve, but the uniform portfolio cannot.

7.5.3 Experiment 2: Offline Predictive Models Via Classifiers
The predictive model used a greedy forward feature selection which chose 28 features (4 basic features
and 24 product features) ranging over all of the feature categories (the same features were used for
all models). The Multilayer Perceptrons model (MP) took 10 minutes to train, while the other
models needed less than one minute to train, so we chose to not include results for MP. All of the
testing took less than a second. Among all instances, the median time taken to compute all features
for an instance is 1 second, the 75th percentile is 19 seconds, and the maximum is 2562 seconds.
Most classifiers showed similar performance as seen in Fig. 7.6. Random Forests (RF) performed
best for Culberson instances solving 45 instances, and Bayesian Network (BN) for Dimacs instances
solving 55 instances. The results highlight the fact that the models are trained on Culberson data,
so the Culberson test results simulate a user having access to results from a similar problem set,
while the Dimacs results simulate a user lacking similar training data.

7.5.4 Experiment 3: Low-Knowledge Single Algorithm Selection
Recall that for six orderings and a time limit T , the training phase for this method takes 6 ∗ t
seconds, while the the final selected algorithm runs for a total of t+ (T − 6 ∗ t) seconds. As stated
before, we use T = (3600, 1800) for the Dimacs and Culberson Test sets respectively. Based on
the results of the training data, we set t = (30, 10, 10) for pcost max, pslope mean, and pextrap
respectively. We present the performance for the three possible settings for this type of portfolio in
Fig. 7.7. We see that pcost slope performs best for Culberson instances solving 46 instances, while
pcost max performs best for Dimacs instances, solving 56 instances. The choice of 10 seconds for
pslope mean will always select the top tie-breaker option (which was dsatur), because there is no
slope to calculate with only one bin, so we use pcost max for both types of instances in our final
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Table 7.1: Number of instances solved to optimality within three time limits for the Culberson
and Dimacs instance types. We compare the best single variable ordering, each of the portfolio
approaches, the oracle, and the method by Held et al. (Held et al. 2012).

Culberson Dimacs

100s 750s 1,800s 100s 1,000s 3,600s

Single Variable Ordering (max degree/min width) 36 44 46 51 52 54

Static Uniform Time Allocator 35 40 44 51 54 55
Offline Predictive Model (RF/BN) 35 43 45 49 54 55
Low-Knowledge Single Algorithm (PCOST) 32 42 45 40 54 56
Dynamic Online Time Allocator 37 45 46 53 53 55

Oracle 39 44 46 54 54 57

Held et al. 44 50 52 53 56 60

comparisons. The results show that while this type of portfolio may take a while to train, its late
performance looks strong for both types of instances.

7.5.5 Experiment 4: Dynamic Online Time Allocator
We ran this method on the training data using values of (0, 2, 4, 6) for each possible bonus value.
Based on those results, for the testing sets we used lb bonus = 6, delta bonus = 6, and tie bonus =
6. These large yet equal bonuses made it quick to either converge to an optimal allocation share or
revert back to the uniform distribution. The overall comparison in the next section includes these
results.

7.5.6 Overall Comparison
Lastly, we compare the performance of the best settings for each type of portfolio against the
oracle, the best performing individual ordering (max degree, resp. min width), and the state-of-
the-art graph coloring solver by Held et al. (Held et al. 2012). The latter solver is based on integer
linear programming, and implements a branch-and-price algorithm.1 The performance plot for each
method is given in Fig. 7.8 for the Culberson instances (a) and Dimacs instances (b). In addition,
Table 7.1 presents the number of instances solved to optimality within three different time limits for
each algorithm and each instance type.

Table 7.1 shows that the best performing portfolios at the time limit are PCOST and dy-
namic online for the Culberson instances (solving 46 instances), and PCOST again for the Dimacs
instances (solving 56 instances). Fig. 7.8 furthermore shows that also in terms of overall performance
(across varying time limits and for both instance types), both the low-knowledge PCOST and dy-
namic online portfolios perform well. However, one may favor the dynamic online portfolio because
the low-knowledge method is often slower to reach optimality due to its training phase. Notice that
for the Culberson instances, the dynamic online portfolio solves the same number of instances as
the single variable ordering max degree. More granularity shows that the dynamic online portfolio

1The code has been downloaded from https://github.com/heldstephan/exactcolors.
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solves 46 instances in 1,080 seconds while the max degree ordering takes 1,200 seconds. This in-
dicates that for a set of similar graph instances, one variable ordering might work just as well as
a portfolio, but when the set of instances is more diverse like in the Dimacs set, the portfolio can
become more helpful.

The predictive method shows slightly stronger relative performance to the other portfolio methods
on the Culberson instances than for the Dimacs instances, especially looking at 100s. This is likely
because the training set consists of Culberson instances. Also notice from comparing the performance
of the dynamic online portfolio and the oracle at 750s for Culberson instances that portfolios using
more than one ordering can even outperform the oracle when one variable ordering finds the best
lower bound and another finds the matching upper bound.

In a comparison to the state of the art, the dynamic online portfolio improves the performance of
the decision diagram approach to be competitive with Held et al. for the Dimacs instances. However,
overall Held et al. solve more instances within the time limit. For the Culberson instances, the
approach by Held et al. clearly outperforms the best portfolio approach.

7.6 Conclusion
We presented a portfolio approach to selecting the best variable ordering for relaxed decision dia-
grams in the context of combinatorial optimization. We considered four approaches: uniform time
allocation, predictive modeling, a low-knowledge selection procedure, and a dynamic online time
allocator. We compared the performance of these methods on the graph coloring problem, and find
that even the simplest portfolio (uniform time allocation) already outperforms all individual order-
ings for the Dimacs benchmark set of instances. The dynamic online time allocator showed the best
overall performance. As it can combine lower and upper bounds from different orderings, it is even
able to outperform an oracle that selects the best single ordering for each instance.

79



1s 60s 1800s
0

20

40

60

80

100

120

Nu
m
be

r o
f i
ns
ta
nc

es
 so

lv
ed

min_width
dsatur
max_path
max_clique
lex
max_degree

(a) Test Culberson instances

1s 60s 3600s
0

20

40

60

80

100

120

Nu
m
be

r o
f i
ns
ta
nc

es
 so

lv
ed

min_width
dsatur
max_path
max_clique
lex
max_degree

(b) Dimacs instances

Figure 7.4: The frequency that a variable ordering yields the best lower bound within a time range
of (1s, 60s, 1800/3600s) from the fastest time of any ordering, for the Test Culberson instances (a)
and the Dimacs instances (b).
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Figure 7.5: The number of instances solved to optimality within t seconds for each variable ordering,
the oracle, and the uniform time-sharing portfolio. The time is in log-scale.
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Figure 7.6: The number of instances solved to optimality within t seconds for each type of classifier
used in the predictive method and the oracle. The time is in log-scale.
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Figure 7.7: The number of instances solved to optimality within t seconds for each function that
can be used in the low knowledge portfolio and the oracle. The time is in log-scale.
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Figure 7.8: The number of instances solved to optimality within t seconds for the best performing
individual variable ordering (max degree/min width), the best setting for each portfolio method,
the oracle, and the state-of-the-art code by Held et al. (Held et al. 2012), for the Test Culberson
instances (a) and the Dimacs instances (b).
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Chapter 8

Conclusion

This dissertation does not show that column elimination always outperforms existing approaches.
Rather, it develops and describes the novel framework, studies its computational performance, and
shows some instances where it performs well.

The current work on column elimination has so far revealed two types of problems for which it
performs well. First, problems where relaxations are not often considered, such as the graph coloring
problem where column elimination relaxes the notion of an independent set. Second, problems where
the linear programming relaxation of the arc flow formulation provides a small optimality gap, which
enables the combined power of a Lagrangian method, a refinement algorithm, and variable fixing.

Column elimination has features that distinguish it from the existing iterative refinement ap-
proaches that solve arc flow formulations, which were mentioned in Section 2. Each method starts
with a relaxed model such as a state-space relaxation, solves the relaxed model, and uses the solution
to refine the relaxed model. The following are comments about these components in the context of
solving arc flow formulations.

Consider the initial model relaxation. There is a tradeoff between the size of the model and the
strength of the relaxation. State-space relaxations and discretizations are the most common ways
to relax a dynamic program, which is an equivalent way of relaxing an arc flow formulation. These
relaxations often maintain the true cost of each sequence and only relax the set of feasible sequences.
Aggregations and merging techniques from decision diagram approaches can offer more flexibility
to the relaxations. The column elimination framework allows this flexibility, although the works
presented in this thesis only use state-space relaxations for the initial relaxation.

Consider the method for solving the relaxed model at each iteration. The following are three
important considerations: the efficiency of the method, the ability to add cutting-planes, and when
refinement can occur. Integer programming solvers and linear programming solvers are simple to
use and can automatically identify and add cutting-planes. However, they can be inefficient for
large instances and require waiting for the optimal solution to make a refinement. Branch-and-
price is often efficient, easily allows adding robust cutting-planes, and permits refinements based
on solutions to the pricing problem. However, it can have issues with stability and convergence,
struggle with non-robust cuts, and often uses coarse refinements to maintain an efficiently solvable
pricing problem. Lagrangian methods can be efficient as long as the Lagrangian subproblem can
be solved efficiently. They give feasible dual solutions at each iteration which provides dual bounds
that can be used in variable fixing. Refinement can occur at each iteration based on the solution to
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the Lagrangian subproblem. However, they can have convergence issues, and it is difficult to add
cuts to Lagrangian methods. So far column elimination relies on integer programming solvers and
Lagrangian methods.

Consider the refinement algorithm. Refinement algorithms vary a lot. They can be based on the
specific infeasibilities that the relaxed model allows. For example, a specialized refinement algorithm
can remove infeasible solutions that are caused by repeating an element in a sequence. Similarly, a
specialized refinement algorithm can leverage particular types of discretizations of values. On the
other hand, some refinement methods can generically remove an infeasible sequence. Based on the
method of solving the relaxed model, some refinement algorithms very coarsely update a state-space
relaxation while others make minor changes to the state-transition graph. The mechanics for most
refinement algorithms are based on disaggregating nodes or introducing nodes and updating arcs to
fix an infeasibility. Column elimination uses a refinement algorithm that is generically defined for
dynamic programs and makes minor changes to the state-transition graph.

There are several promising directions for future work. First, column elimination can solve more
types of problems. For example, the current setup requires a homogeneous set of sequences, but this
can be extended to sequences from different sets. Also, current work has only considered vehicle
routing problems and vertex coloring problems. Second, the method for solving the relaxation can
be improved. The Lagrangian method can be improved in several ways including warm-starting
the successive shortest paths algorithm at each iteration, implementing a bundle method instead
of subgradient descent, and a better cut-and-refine approach to include cutting-planes. Column
generation can also be incorporated as a method to solve the relaxation. Third, the relaxations used
by column elimination can be improved. The initial relaxation can be created by merging methods
from decision diagrams instead of using state-space relaxations. Good initial relaxations could be
learned with machine learning. Finally, instead of only refining conflicts, a method can be used to
merge nodes in the state-transition graph.
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Appendix A

Dynamic Program Relaxation
Example

We give an example of a dynamic program relaxation that is not a state-space relaxation. First,
we give the formal definition of a state-space relaxation. We will use a formal definition similar
to the one in Christofides et al. (1981b). Given (S1, h1, c1, G1), define a state-space relaxation
to be (S2, h2, c2, G2) that meets the following requirements. First, |S2| < |S1|. Second, there
exists a mapping function µ : S1 → S2 such that for each s2 ∈ S1, for all (s1, u) ∈ h−1

1 ({s2}),
(µ(s1), u) ∈ h−1

2 ({µ(s2)}), where we define h−1({s2}) = {(s1, d) : h((s1, d)) = s2} as the preimage
of s2 ∈ S, not to be confused with an inverse function. Third, for every s1 ∈ S2, c2(s1, u) =
min{s3∈S1|µ(s3)=u,µ(h1(s3,u))=h2(s1,u)}{c1(s3, u)}.

We give an example of when a dynamic program relaxation is not a state-space relaxation in
Proposition 9, using data for an example CVRP instance in Figure 3.2. The costs are not relaxed in
either dynamic program, so we only argue about the solution sets complying with the definitions.

Proposition 9. The dynamic program relaxation represented by the state-transition graph in Fig-
ure A.1(b) is not a state-space relaxation.

Proof. For sake of contradiction assume the dynamic program relaxation is a state-space relaxation
defined by a mapping µ. It must be the case that µ(r) = r, which implies µ(({1}, 1, 1)) = ({1}, 1, 1)
and µ(({2}, 1, 2)) = ({2}, 1, 2). This implies µ(({1, 2}, 2, 2)) = ({1, 2}, 2, 2) and µ(({2, 1}, 2, 1)) =
({1}, 2, 1). Finally, this implies µ(({1, 2, 3}, 3, 3)) = ({1, 2, 3}, 3, 3), which would require h(({2, 1}, 2, 1), 3) =
({1, 2, 3}, 3, 3), but in the dynamic program relaxation shown h(({2, 1}, 2, 1), 3) = ({2, 1, 3}, 3, 3) (the
states labelled ({1, 2, 3}, 3, 3) and ({2, 1, 3}, 3, 3) are distinct even though they represent the same
information), which is a contradiction.
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Figure A.1: The state-transition graph on the left is a state-space relaxation of a dynamic program,
and the state-transition graph on the right is a dynamic program relaxation created by removing
some feasible sequences from the state-space relaxation on the left.
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Appendix B

Application Models

B.1 VRPTW
The problem P has the same form as the CVRP, but the set S is further restricted to routes that
respect the time window constraints. To create P , we extend the model for the CVRP as follows. We
augment the states of the dynamic program to consider time. The states become tuples (NG, w, v, τ)
where τ is the current time. The initial state is r = (∅, 0, 0, 0). Given a state s = (NG, w, v, τ) and
element u ∈ U such that u ̸= 0, u /∈ NG, w + qu ≤ Q, and τ + ℓv,u ≤ lu, the transition function
becomes h(s, u) = (NG ∪ {u}, w + qu, u,max(τ + ℓv,u, eu)). Otherwise if u = 0 and τ + ℓv,0 ≤ l0,
define h(s, 0) = t. Otherwise h(s, u) = −1. The cost function is the same as for the CVRP. The
constraints G are the same as for the CVRP, but without the constraint requiring K vehicles.

We relax the model by creating a dynamic programming relaxation w.r.t. P . We use an ng-route
relaxation and also consider relaxing the time windows and/or vehicle capacity. To relax the time
windows, we use a ‘bucketing’ idea from the column generation literature (Sadykov et al. 2021).
When a transition would create a state with time value τ , round down τ to the nearest multiple
of ∆ ∈ Z. To relax the load values, for certain instances we set all states to have load 0. This
way, we only create states that remember load when conflicts are refined. We use a binary value κ
to indicate if capacity should be relaxed or not. We add a counter c to all states to maintain an
acyclic state-transition graph (Horn 2021). We use an upper bound denoted U on the number of
locations in a route, because the relaxation can create many long infeasible routes. We calculate
U by using two greedy methods based on summing the smallest loads up to Q and summing the
shortest distances with service times compared to l0.

Formally, we construct an initial dynamic programming relaxation P ′ = (S′, h′, c′, G′) w.r.t. P .
Each state is a tuple (NG, w, v, τ, c) with the initial state being r1 = (∅, 0, 0, 0, 0). The set of states
S′ is implicitly in defining a transition function h′. Given a state s = (NG, w, v, τ, c) and label u ∈ U
such that u ̸= 0, u /∈ NG, w + qu ≤ Q, τ + ℓv,u ≤ lu, and c < U , let the transition function be
h′(s, u) = ((NG ∪ {u}) ∩ Nu, (w + qu) ∗ (1 − κ), u,max(⌊ τ+ℓv,u

∆ ⌋ ∗ ∆, ev), c + 1). Otherwise, when
u = 0 and τ + ℓv,0 ≤ l0, define h′(s, 0) = t. Otherwise h′(s, u) = −1. Then, we keep the same cost
function c′ = c and the same additional cost function G′ = G.
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B.2 Graph Multicoloring
The problem P is formed by an element set U = {1, ..., |V |}, a set S containing all independent sets
in G as sequences with strictly increasing values, a constant cost function f = 1, and for a subset of
sequences X, C(X) = 1 if and only if all vertices are contained in at least one sequence. We represent
the constraint function as a tuple (γj ,=, bj) for each j = 1, ..., |V | such that γj(x) = Jj ∈ xK.

We model the problem with a dynamic program P = (S, h, c,G). The dynamic program will
depend on an ordering of the vertices {1, . . . , |V |}, similar to the one in van Hoeve (2022). In
our experiments, we use a variable ordering called ‘min width’ from Karahalios and van Hoeve
(2022). Let each state s = (NG) contain a ‘no-good’ subset of vertices NG that can no longer be
included in an independent set. The initial state is r = (∅). The transition function given a state
s = (NG) and decision i such that i /∈ NG is h(s, i) = (NG ∪Ni ∪ {1, . . . , i}), where Ni is the set of
neighbors of vertex i, and all vertices with smaller index are included in the updated NG to break
symmetries. The dynamic program differs from the one in van Hoeve (2022), because in that work
the set of decisions was binary and each transition corresponded to selecting a vertex to be in the
independent set or not. The cost function is c(r, i) = 1 for all i ∈ U , and c(s, i) = 0 when s ̸= r
for all i ∈ U . Second, we construct G. For each j = 1, ...,m, we create an additional cost function
gj((s, u)) = Jj = uK.

We relax the model by creating a dynamic programming relaxation P ′ = (S′, h′, c′, G′) w.r.t. P .
Each state maintains a ‘no-good’ subset of vertices s = (NG) and the initial state is r = (∅). The
dynamic program only ‘remembers’ the latest decision. Formally, given a state s = (NG) and feasible
transition u ∈ U such that u /∈ NG, define h′(s, u) = ({1, . . . , u} ∪ Nu). Otherwise, h′(s, u) = −1.
We keep the same cost function c′ = c and additional cost functions G′ = G.

In our experiments, we use a common preprocessing rule to simplify the graph G before setting
up the model. We remove a vertex if the sum of the weights of its neighbors plus its own weight
is smaller than a lower bound on the optimal solution value. For multicoloring, we use an initial
maximum (weighted) clique from Gualandi and Malucelli (2012) as an initial lower bound for this
preprocessing.

B.3 PDPTW / SOP
The problem P has the same form as the VRPTW, but the sequences in S must also follow the
precedence constraints. We define the set of precedence locations for each location u ∈ V as Πu.
So, for u ∈ D, Πu = {u − n}, and Πu = ∅ otherwise. We define the transition function as follows.
Each state is a tuple s = (NG, w, v, τ) and the initial state is r = (NG, w, v, τ). Given a state
s = (NG, w, v, τ) and element u ∈ U such that u ̸= 0, u /∈ NG, Πu ⊆ NG, w + qu ≤ Q, and
τ + ℓv,u ≤ lu, let h(s, u) = (NG ∪ {u}, (w + qu) ∗ (1 − κ), u, ⌊max(τ+ℓv,u,eu)

∆ ⌋ ∗∆, c + 1). Otherwise,
when u = 0 and τ + ℓv,0 ≤ l0, define h(s, 0) = t. Otherwise h(s, u) = −1. The cost function and the
additional costs are the same as for the VRPTW.

We relax the model in a similar way to the VRPTW, while also relaxing precedence constraints.
To relax the model, we create a dynamic programming relaxation P ′ = (S′, h′, c′, G′) w.r.t. P .
Again, we add a counter c to each state, so each state has the form s = (NG, w, v, τ, c). The initial
state is r = (∅, 0, 0, 0, 0). Then, for a state s = (NG, w, v, τ, c) and transition u such that u ̸= 0,
u /∈ NG, w + qu ≤ Q, τ + ℓv,u ≤ lu, and c < |V |, let h′(s, u) = ((NG ∪ {u}) ∩ Nu, (w + qu) ∗ (1 −
κ), u,max(⌊ τ+ℓv,u

∆ ⌋ ∗∆, eu), c + 1). When u = 0, let h′(s, u) = t. Otherwise h′(s, u) = −1. We use
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the same cost function c1 = c and additional cost functions G′ = G.
Similar to other works in the vehicle routing literature, we aim to solve instances based on

distances that are rounded to the thousandths place. To do this, we start by rounding distances to
the hundredths place and solving the instance. Then, we keep the Pi at termination, update the
distances to be rounded to the thousandths place, and solve the instance again. We model the SOP
in this way, with the additional constraint that a solution has one sequence.
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Appendix C

Variable Fixing

Variable fixing is an important method to improve the performance of column elimination. Variable
fixing is an acceleration method used in integer programming (Nemhauser and Wolsey 1988) and
constraint programming (Focacci et al. 1999) to prove that a variable must equal its lower bound or
upper bound in an optimal solution. For integer programming, the proof requires a primal bound
and a feasible dual solution to the linear programming relaxation. For column elimination, we use
a variable fixing algorithm that considers one arc a ∈ A at a time and reasons about all r− t paths
that traverse the arc. Theorem 9 generalizes the arc fixing theorem from Karahalios and van Hoeve
(2023b), which is based on Irnich et al. (2010).

Let ν be a feasible solution to the dual of LP(F ) such that each ν corresponds to G. For each
arc a ∈ A we define a ‘reduced cost distance’ rc(ya) = ca −

∑m
j=1 gj(a)νj . For each node u ∈ N , we

define sp↓
u as the shortest r-u path in the state-transition graph of P with respect to the reduced

cost distances, and similarly define sp↑
u to be the shortest u-t path in the state-transition graph of

P .

Theorem 9. Consider arc a = (v1, v2) ∈ A. Let v(ν) be the solution value of ν to the dual of LP(F ),
and let UB an upper bound on the optimal solution value for F . If v(ν) + sp↓

v1
+ sp↑

v2
+ rc(a) > UB,

then arc a can be fixed to have flow 0 in F .

Proof. Proof Consider the following integer program that is equivalent to F , created by enumerating
the solutions to S, where Ax is the set of arcs in the solution x.

(IP) min
∑
x∈X

zxf(x) (C.1)

s.t.
∑
x∈X

zx
∑
a∈Ax

gj(a) ◦j bj ∀ j ∈ {1, . . . ,m} (C.2)

z ∈ Z|X |
+ (C.3)

Given ν and a solution x, in the linear program relaxation of IP, the variable zx has reduced cost
rc(x) = f(x)−

∑m
j=1 νj

∑
a∈Ax

gj(a). Each x corresponds to a path p = {a1, . . . , al} in D, so rc(x)
can be decomposed into rc(x) =

∑
a∈Ax

rc(ya). For all p that contain arc a, let p′ be the path that
corresponds to the route x with lowest reduced cost. Denote the lowest reduced cost as rc′(x′) =
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sp↓
v1

+ sp↑
v2

+ rc(a). Now for sake of contradiction assume an optimal solution to F has ya = 1.
Then some solution x′′ in D that contains arc a will be in the solution X to F , which is equivalent
to zx′′ = 1 in IP. To construct the remainder of an optimal solution to the linear programming
relaxation of IP, we can solve the linear programming relaxation with the constraints defined by G
adjusted to have the values contributed from x′′ removed. Then, ν remains feasible to the dual of
this updated problem and has value v(ν)−

∑m
j=1 νj

∑
a∈Ax′′ gj(a). So, combining this feasible dual

with the cost of x′′ gives a valid lower bound on IP as v(ν)−
∑m
j=1 νj

∑
a∈Ax′′ gj(a) + f(x′′). This

contradicts UB. Specifically, v(ν)−
∑m
j=1 νj

∑
a∈Ax′′ gj(a)+f(x′′) = v(ν)+rc(x′′) ≥ v(ν)+rc(x′) ≥

v(ν) + sp↓
v1

+ sp↑
v2

+ rc(a) > UB.
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Appendix D

Convergence of Column
Elimination with Subgradient
Descent

It is not straightforward to analyze the convergence of column elimination with subgradient descent.
Given Fi, subgradient descent will converge to an optimal dual solution for LP(Fi) if a divergent
series step-length is used (Anstreicher and Wolsey 2009). However, an optimal primal solution is
needed to determine if any conflicts need to be refined. Subgradient descent produces a sequence
of solutions to the Lagrangian relaxation whose average converges to an optimal primal solution,
but this does not theoretically guarantee that an optimal primal solution is found (Anstreicher and
Wolsey 2009).

So, to evaluate the convergence of the algorithm in practice, we consider the following example.
We apply column elimination and column elimination with subgradient descent to solve the instance
C1 2 5 of the Vehicle Routing Problem with Time Windows (VRPTW) from Gehring and Homberger
(2002), which we define in the next section. For each algorithm, we plot the sequence of dual solutions
obtained at each iteration, converted into three dimensions using a principal component analysis
method. Figure D.1(a) shows that the optimal dual solutions of column elimination can greatly
change from one iteration to the next, possibly indicating degeneracy, which can hinder column
generation. In contrast, Figure D.1(b) shows a smooth path of dual solution values, indicating that
each step of subgradient descent is in the general direction of the optimal dual solution to LP(F )
that the algorithm finds upon termination.
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a. CPLEX b. Lagrangian Method

Figure D.1: Sequences of dual solutions obtained by running a column elimination and column
elimination with subgradient descent to solve the VRPTW instance C1 2 5. The dual solutions are
plotted in three dimensions using the Python package ‘sklearn’.
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Appendix E

Evaluating Column Elimination
with Subgradient Descent

We give insights into when column elimination with subgradient descent will outperform column
elimination. To do this, we apply each algorithm to solve the vertex coloring instances from Johnson
and Trick (1996) and the VRPTW instances from Gehring and Homberger (2002) and Solomon
(1987). We choose these two applications, because they differ in the following way. The primal
and dual solutions to Fi and Fi+1 for some iteration i can be greatly different for vertex coloring.
However, for the VRPTW, the primal and dual solutions can remain very similar. This property
affects the performance of column elimination with subgradient descent for two reasons. Firstly,
it changes the likelihood that refinements of conflicts at the current iteration will benefit future
iterations. Secondly, the steps of subgradient descent are more likely to be in the direction of the
optimal solutions to F . So, we hypothesize that column elimination with subgradient descent will
perform well for the VRPTW, but not for vertex coloring problem.

We show a plot that validates our hypothesis. For instances that both column elimination and
column elimination with subgradient descent solver, we plot the time it takes for column elimination
and column elimination with subgradient descent to solve each instance in Figure E.1(a). For
vertex coloring, column elimination solves instances on average 195 seconds faster than column
elimination with subgradient descent. For the VRPTW, the column elimination with subgradient
descent solves instances on average 330 seconds faster than column elimination. For vertex coloring,
column elimination solves 13 additional instances and column elimination with subgradient descent
solves no additional instances. For the VRPTW, column elimination with subgradient descent solves
two additional instances and column elimination solves one additional instance.
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a. Subgradient Descent b. Initial Relaxations for SOP

Figure E.1: a) The time taken to solve VRPTW and vertex coloring (VC) instances using column
elimination (CE) and column elimination with subgradient descent (CESGD). The axes use log
scales. b) The optimality gap achieved when using column elimination with subgradient descent
starting with an initial ng-route relaxation with ρ = 2 (CESGD NG2) and an initial ng-route
relaxation with ρ = 8 (CESGD NG8) for the SOP with p% precedence constraints.
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Appendix F

Sensitivity to Initial Relaxations

We evaluate the sensitivity of column elimination to the initial relaxation. To do this, we use column
elimination with subgradient descent and two different initial relaxations to solve the TSPLIB SOP
instances (Ascheuer et al. 2000). The two initial relaxations are ng-route with ρ = 2 and ρ = 8. We
aim to test the behavior of the following general tradeoff. A stronger initial relaxation can reduce
the number of conflict refinements needed for column elimination to solve the problem, but it can
increase the time needed to solve LP(Fi) at each iteration. In the context of the SOP, we consider
that an initial relaxation relaxes precedence constraints and the constraint that the solution is an
elementary path. We hypothesize that a stronger ng-route relaxation will capture the constraint that
a solution is an elementary path, but not capture the precedence constraints because the NG sets
are different for each location, so larger NG sets do not necessarily encode precedence constraints
for solutions that have two locations appearing far apart in the ordering.

We show a plot that gives insight into this hypothesis. We plot the optimality gaps achieved
at termination when starting with the ρ = 2 and ρ = 8 initial relaxations in Figure E.1(b). The
instances are partitioned based on the percent of values in the distance matrix that are indicate
a precedence, which we denote at p. The groups are p ≤ 10, 10 < p < 40, and p ≥ 40. The
instances in the group p ≤ 10 tend to have a smaller number of vertices than the instances in the
group with p ≥ 40. The average number of locations is 63 and 263 respectively. The plot shows
that for instances with a low percent of precedences, starting with the ρ = 8 initial relaxation is
beneficial. For these instances, the size of the initial relaxation for ρ = 8 is small enough that column
elimination can run for many iterations; when using ρ = 8 the median number of iterations solved
is 3507 and when using ρ = 2 the median is 19389 iterations. In comparison, the plot shows that for
instances with a high percent of precedences, starting with the ρ = 2 initial relaxation is beneficial.
For these instances, when using ρ = 8, the median number of iterations solved is only 206, and when
using ρ = 2 the median is 1038 iterations.
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Appendix G

Impact of Using Minimum Update
SSP

We evaluate the impact of the minimum update successive shortest paths (muSSP) instead of SSP
during column elimination with subgradient descent. We use column elimination with subgradient
descent to solve ten CVRP instances from Uchoa et al. (2017) each with a different number of
locations. At each iteration, we solve L(λ) using both muSSP and SSP. We plot the runtimes in
Figure G.1(b). For smaller instances, there is not much impact, but for larger instances muSSP can
greatly improve performance. Using muSSP solves the subproblem on average 3.7 times faster than
using SSP.

a. Impact of muSSP b. Impact of Variable Fixing

Figure G.1: a) The difference in solve time of L(λ) between SSP and muSSP for solving VRPTW
instances with column elimination. For both plots, the axes use log scales. b) The runtime to solve
CVRP instances using column elimination and column elimination with subgradient descent both
with and without variable fixing.
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Appendix H

Impact of Using Variable Fixing

We evaluate the effect of using variable fixing during column elimination. We use column elimination
with and without subgradient descent, and with and without variable fixing, to solve the VRPTW
instances from Solomon (1987). We plot the run times of instances solved by both methods in
Figure G.1(a). Variable fixing allows column elimination with subgradient descent to solve one
additional instance and solved instances on average 106 seconds faster than without variable fixing.
Variable fixing allows column elimination without subgradient descent to solve 4 additional instances
and solved instances on average 110 seconds faster than without variable fixing. These are the first
experimental results for using variable fixing during column elimination with subgradient descent
by checking dual feasibility and repairing infeasible duals.

a. Cut-and-refine b. Branch-and-refine

Figure H.1: a) The runtime to solve VRPTW instances using column elimination with and without
subgradient descent, with and without cuts. b) The runtime to solve vertex coloring instances using
column elimination (CE) and branch-and-refine. For this plot the axes use log scales.
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Appendix I

Evaluating Cut-and-refine

We evaluate the performance of cut-and-refine compared to column elimination. We implement cut-
and-refine for the CVRP using the framework in Figure 4.3. We apply column elimination without
adding any cutting-planes and cut-and-refine on the CVRP instances from http://vrp.atd-lab.
inf.puc-rio.br/index.php/en/ in classes A,B,M,E,F, and P. We also apply column elimination
with subgradient descent without any cutting-planes and cut-and-refine with subgradient descent
to the same instances. We choose to remove the constraint that a solution must use K vehicles,
as this is the case for the large-scale VRPTW instances that we will evaluate when comparing to
the state-of-the-art. Similar experiments that include the constraint on the number of vehicles are
shown in Karahalios and van Hoeve (2023b).

We plot the optimality gaps achieved at termination for both column elimination without cuts,
column elimination with subgradient descent without cuts, cut-and-refine, and cut-and-refine with
subgradient descent in Figure H.1(a). The plot shows that cut-and-refine achieves better opti-
mality gaps than column elimination without cutting-planes. However, the plot also shows that
cut-and-refine with subgradient descent does not improve the performance of column elimination
with subgradient descent without cutting-planes.
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Appendix J

Evaluating Branch-and-refine

We evaluate the performance of branch-and-refine. We implement branch-and-refine for the vertex
coloring problem. We use Zykov branching, which chooses two nonadjacent vertices and defines
one branch by contracting these vertices and the other branch by adding an edge between the
vertices (Corneil and Graham 1973). We choose the two nonadjacent vertices with the highest sum
of their degrees, using an ordering of the vertices as a tie breaker. We terminate the algorithm when
solving a subproblem if there has not been an improvement to the lower bound for 30 seconds. We
choose the subproblem with the greatest lower bound as the one to solve next, using the most recently
created node as a tie breaker. We solve the DIMACS vertex coloring instances using branch-and-cut
and column elimination Johnson and Trick (1996).

We plot the runtimes of column elimination and branch-and-refine on instances that both meth-
ods solve in Figure H.1(b). Branch-and-refine solves instances on average 2.3 times faster than with-
out using branching. Branch-and-refine solves an additional 7 instances, mostly FullIns instances
related to Mycielski graphs. Using column elimination without branching solves an additional 8
instances, mostly larger instances that require more conflict refinements.
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Appendix K

VRPTW Results

Table K.1: A comparison of the performance of VRPSolver from Pessoa et al. (2020) and column
elimination for solving VRPTW instances by Gehring and Homberger (2002).

Instance VRPSolver Column Elimination
Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)
C1 10 1 42444.8 42444.8 1 1219 42389.3 1 290 742 0 3600
C1 10 10 39816.8 - - 3600 37913.0 1 24 3814 0 3600
C1 10 2 41337.8 41068.76 1 3600 39383.6 1 48 3954 0 3600
C1 10 3 40064.4 - - 3600 38051.3 1 12 2637 0 3600
C1 10 5 42434.8 42434.8 1 1227 41924.9 1 176 4239 0 3600
C1 10 6 42437 42437.0 1 1670 41184.4 1 120 6296 0 3600
C1 10 7 42420.4 42305.87 1 3600 40791.3 1 125 5321 0 3600
C1 10 8 41652.1 41062.0 1 3600 39042.5 1 76 6491 0 3600
C1 10 9 40288.4 39508.04 1 3600 38150.4 1 44 4953 0 3600
C1 2 1 2698.6 2698.6 1 11 2698.6 4 1 3 0 11
C1 2 10 2624.7 2624.7 1 218 2522.82 3 861 8265 0 3600
C1 2 2 2694.3 2694.3 1 29 2694.3 12 121 1099 41 821
C1 2 3 2675.8 2675.8 3 338 2614.92 1 680 5772 0 3600
C1 2 4 2625.6 2625.6 1 457 2516.12 1 414 6904 0 3600
C1 2 5 2694.9 2694.9 1 16 2694.9 6 1 12 1 84
C1 2 6 2694.9 2694.9 1 20 2694.9 6 12 79 2 129
C1 2 7 2694.9 2694.9 1 18 2694.9 7 11 85 4 173
C1 2 8 2684 2684.0 1 26 2680.18 24 124 2178 48 3600
C1 2 9 2639.6 2639.6 1 65 2578.09 6 1150 9021 0 3600
C1 4 1 7138.8 7138.8 1 99 7138.8 4 12 23 1 50
C1 4 10 6825.4 6820.19 1 3600 6608.93 1 226 7098 0 3600
C1 4 2 7113.3 7113.3 7 587 7046.75 1 349 3188 0 3600
C1 4 3 6929.9 6929.9 1 991 6769.86 1 158 4852 0 3600
C1 4 4 6777.7 6769.16 1 3600 6578.63 1 79 4988 0 3600
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Instance VRPSolver Column Elimination
Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)
C1 4 5 7138.8 7138.8 1 134 7138.8 3 33 235 2 258
C1 4 6 7140.1 7140.1 1 204 7140.1 4 73 1096 3 547
C1 4 7 7136.2 7136.2 1 185 7116.39 45 100 2089 25 3600
C1 4 8 7083 7083.0 5 1128 6917.48 1 461 7893 0 3600
C1 4 9 6927.8 6927.8 1 1547 6702.82 1 306 8549 0 3600
C1 6 1 14076.6 14076.6 1 292 14076.6 4 43 102 1 224
C1 6 10 13617.5 13520.25 1 3600 13132.2 1 84 6131 0 3600
C1 6 2 13948.3 13948.3 15 1616 13725.8 1 157 3191 0 3600
C1 6 3 13757 13702.24 1 3600 13285.1 1 58 4470 0 3600
C1 6 4 13538.6 13347.86 1 3600 13026.3 1 24 2556 0 3600
C1 6 5 14066.8 14066.8 1 393 14066.8 3 139 1038 0 1450
C1 6 6 14070.9 14070.9 1 531 14007.8 1 318 3537 0 3600
C1 6 7 14066.8 14066.8 1 476 13999.1 1 314 3249 0 3600
C1 6 8 13991.2 13967.03 3 3600 13598.3 1 220 6853 0 3600
C1 6 9 13664.5 13649.77 1 3600 13225.7 1 136 7265 0 3600
C1 8 1 25156.9 25156.9 1 761 25156.9 3 89 311 0 674
C1 8 10 24026.7 23640.28 1 3600 22962.9 1 49 4641 0 3600
C1 8 2 24974.1 24910.3 1 3600 24094.4 1 77 4205 0 3600
C1 8 3 24156.1 23865.67 1 3600 23194.8 1 26 3668 0 3600
C1 8 4 23797.3 - - 3600 22620.8 1 9 1627 0 3600
C1 8 5 25138.6 25138.6 1 737 25071.0 1 262 2692 0 3600
C1 8 6 25133.3 25133.3 1 1056 24841.7 1 183 4648 0 3600
C1 8 7 25127.3 25127.3 7 1140 24747.7 1 180 4032 0 3600
C1 8 8 24809.7 24688.04 1 3600 23743.9 1 126 7454 0 3600
C1 8 9 24200.4 23972.45 1 3600 23166.8 1 77 6173 0 3600
C2 10 1 16841.1 - - 3600 16727.6 1 142 1476 0 3600
C2 10 10 15728.6 - - 3600 12902.4 1 37 1010 0 3600

Table K.1: Continued.
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Instance VRPSolver Column Elimination
Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)
C2 10 2 16462.6 - - 3600 14676.5 1 47 928 0 3600
C2 10 5 16521.3 - - 3600 15453.4 1 109 3093 0 3600
C2 10 6 16290.7 - - 3600 14834.9 1 78 2036 0 3600
C2 10 7 16378.4 - - 3600 14627.6 1 59 1507 0 3600
C2 10 8 16029.1 - - 3600 14079.1 1 55 1491 0 3600
C2 10 9 16075.4 - - 3600 13297.9 1 37 1038 0 3600
C2 2 1 1922.1 1922.1 1 228 1922.1 10 46 19 0 131
C2 2 10 1791.2 1791.2 1 631 1681.9 1 596 4145 0 3600
C2 2 2 1851.4 1851.4 1 387 1819.17 1 352 2095 0 3600
C2 2 3 1763.4 1753.63 3 3600 1668.03 1 237 1907 0 3600
C2 2 4 1695 1666.49 3 3600 1522.69 1 138 1096 0 3600
C2 2 5 1869.6 1869.6 1 276 1847.4 6 317 2291 16 3600
C2 2 6 1844.8 1844.8 1 249 1787.48 2 901 6230 0 3600
C2 2 7 1842.2 1842.2 1 170 1790.72 3 772 5354 0 3600
C2 2 8 1813.7 1813.7 1 222 1732.38 1 723 4992 0 3600
C2 2 9 1815 1815.0 1 511 1728.32 1 586 4173 0 3600
C2 4 1 4100.3 4100.3 1 852 4085.95 29 150 992 0 3600
C2 4 10 3665.1 3647.88 1 3600 3397.41 1 175 2128 0 3600
C2 4 2 3914.1 3900.22 1 3600 3815.14 1 152 2153 0 3600
C2 4 3 3755.2 3723.96 1 3600 3348.42 1 79 1021 0 3600
C2 4 4 3523.7 3486.12 1 3600 2725.34 1 51 474 0 3600
C2 4 5 3923.2 3923.2 1 971 3831.85 1 376 5034 0 3600
C2 4 6 3860.1 3860.1 1 2466 3696.11 1 291 3892 0 3600
C2 4 7 3870.9 3870.9 1 1483 3692.25 1 253 3391 0 3600
C2 4 8 3773.7 3770.24 1 3600 3553.38 1 232 3090 0 3600
C2 4 9 3842.1 3806.45 1 3600 3568.74 1 210 2714 0 3600
C2 6 1 7752.2 7719.46 1 3600 7688.34 1 391 1671 0 3600

Table K.1: Continued.
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Instance VRPSolver Column Elimination
Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)
C2 6 10 7123.9 6340.81 1 3600 6437.63 1 94 1733 0 3600
C2 6 2 7471.5 7075.15 1 3600 7177.06 1 94 1546 0 3600
C2 6 3 7215 4670.06 1 3600 5953.32 1 41 593 0 3600
C2 6 5 7553.8 7540.44 1 3600 7241.6 1 231 4427 0 3600
C2 6 6 7449.8 7400.61 1 3600 6976.78 1 168 3227 0 3600
C2 6 7 7491.3 6294.69 1 3600 6966.47 1 151 2871 0 3600
C2 6 8 7303.7 7223.09 1 3600 6753.56 1 140 2559 0 3600
C2 6 9 7303.2 5754.15 1 3600 6741.86 1 104 1834 0 3600
C2 8 1 11631.9 - - 3600 11551.8 1 196 1177 0 3600
C2 8 10 10946 - - 3600 9589.46 1 62 1133 0 3600
C2 8 2 11394.5 - - 3600 10571.2 1 66 1403 0 3600
C2 8 3 11138.1 - - 3600 7521.76 1 23 438 0 3600
C2 8 5 11395.6 - - 3600 10829.3 1 154 3589 0 3600
C2 8 6 11316.3 - - 3600 10462.4 1 104 2330 0 3600
C2 8 7 11332.9 - - 3600 10403.4 1 88 1968 0 3600
C2 8 8 11133.9 - - 3600 10059.0 1 80 1700 0 3600
C2 8 9 11140.4 - - 3600 9941.42 1 65 1332 0 3600
R1 10 1 53046.5 52756.54 1 3600 50054.4 1 30 38 0 3600
R1 10 10 47364.6 46676.18 1 3600 - - - - - 3600
R1 10 5 50406.7 49928.13 1 3600 46544.8 1 13 118 0 3600
R1 10 9 49162.8 48632.73 1 3600 - - - - - 3600
R1 2 1 4667.2 4667.2 1 16 4645.79 5 806 189 0 3600
R1 2 10 3293.1 3285.31 15 3600 3112.62 1 53 784 0 3600
R1 2 2 3919.9 3919.9 1 45 3548.3 1 57 593 0 3600
R1 2 3 3373.9 3358.72 5 3600 2777.54 1 15 108 0 3600
R1 2 4 3047.6 3039.51 3 3600 - - - - - 3600
R1 2 5 4053.2 4053.2 3 399 3975.13 1 301 1308 0 3600

Table K.1: Continued.
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Instance VRPSolver Column Elimination
Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)
R1 2 6 3559.1 3552.78 13 3600 3261.57 1 50 678 0 3600
R1 2 7 3141.9 3141.9 1 750 2738.89 1 15 120 0 3600
R1 2 8 2938.4 2938.4 5 2030 - - - - - 3600
R1 2 9 3734.7 3734.7 3 731 3607.4 1 165 1453 0 3600
R1 4 1 10305.8 10305.8 3 338 10134.3 1 220 137 0 3600
R1 4 10 8077.8 8028.88 1 3600 7230.95 1 15 326 0 3600
R1 4 2 8873.3 8843.47 7 3600 7162.98 1 13 112 0 3600
R1 4 3 7784.3 7698.59 9 3600 - - - - - 3600
R1 4 4 7266.2 7200.12 3 3600 - - - - - 3600
R1 4 5 9184.6 9153.48 11 3600 8911.2 1 89 628 0 3600
R1 4 6 8340.4 8321.6 5 3600 - - - - - 3600
R1 4 7 7599.8 7544.64 1 3600 - - - - - 3600
R1 4 8 7240.5 7161.9 1 3600 - - - - - 3600
R1 4 9 8677.5 8627.8 5 3600 8120.79 1 43 871 0 3600
R1 6 1 21274.2 21231.91 11 3600 20489.4 1 92 246 0 3600
R1 6 10 17583.7 17344.32 3 3600 - - - - - 3600
R1 6 2 18558.7 18419.8 1 3600 - - - - - 3600
R1 6 3 16874.9 16668.68 1 3600 - - - - - 3600
R1 6 4 15721.4 15538.78 1 3600 - - - - - 3600
R1 6 5 19294.9 19210.23 3 3600 18477.3 1 40 399 0 3600
R1 6 6 17763.7 17630.27 1 3600 - - - - - 3600
R1 6 7 16496.2 16300.22 1 3600 - - - - - 3600
R1 6 9 18474.1 18357.21 3 3600 16773.9 1 17 349 0 3600
R1 8 1 36345 36225.6 5 3600 34190.2 1 49 139 0 3600
R1 8 10 30918.4 30551.1 1 3600 - - - - - 3600
R1 8 2 32277.6 31948.36 1 3600 - - - - - 3600
R1 8 5 33494.2 33279.06 1 3600 31174.3 1 22 306 0 3600

Table K.1: Continued.
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Instance VRPSolver Column Elimination
Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)
R1 8 6 30872.4 30460.46 1 3600 - - - - - 3600
R1 8 9 32257.3 31928.06 1 3600 - - - - - 3600
R2 2 1 3468 3468.0 1 142 3147.13 1 179 864 0 3600
R2 2 10 2549.4 2549.4 3 1439 1167.03 1 34 46 0 3600
R2 2 2 3008.2 3008.2 1 531 803.416 1 18 0 0 3600
R2 2 3 2537.5 2537.5 1 2283 - - - - - 3600
R2 2 4 1928.5 1925.02 3 3600 - - - - - 3600
R2 2 5 3061.1 3061.1 1 1125 1912.5 1 71 201 0 3600
R2 2 6 2675.4 2675.4 3 2384 803.416 1 18 0 0 3600
R2 2 7 2304.7 2298.61 1 3600 - - - - - 3600
R2 2 8 1842.4 1819.76 1 3600 - - - - - 3600
R2 2 9 2843.3 2843.3 1 782 1547.69 1 56 104 0 3600
R2 4 1 7520.7 7520.7 1 2828 4927.05 1 59 160 0 3600
R2 4 10 5645.9 5543.96 1 3600 - - - - - 3600
R2 4 2 6482.8 6374.27 1 3600 - - - - - 3600
R2 4 5 6567.9 6527.42 1 3600 3070.78 1 30 13 0 3600
R2 4 6 5813.5 5643.47 1 3600 - - - - - 3600
R2 4 9 6067.8 6027.42 1 3600 - - - - - 3600
R2 6 1 15145.3 - - 3600 7667.62 1 30 10 0 3600
R2 8 1 24969.8 - - 3600 5358.46 1 5 0 0 3600
RC1 10 1 45790.8 45302.6 1 3600 41546.0 1 16 749 0 3600
RC1 10 5 45028.1 44404.77 1 3600 - - - - - 3600
RC1 10 6 44903.6 44284.41 1 3600 - - - - - 3600
RC1 10 7 44417.1 43820.04 1 3600 - - - - - 3600
RC1 10 8 43916.5 43307.23 1 3600 - - - - - 3600
RC1 10 9 43858.1 43191.82 1 3600 - - - - - 3600
RC1 2 1 3516.9 3516.9 23 2632 3434.03 1 422 2113 0 3600

Table K.1: Continued.
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Instance VRPSolver Column Elimination
Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)
RC1 2 10 2990.5 2969.39 5 3600 2739.26 1 42 964 0 3600
RC1 2 2 3221.6 3213.54 9 3600 2976.47 1 66 973 0 3600
RC1 2 3 3001.4 2984.21 3 3600 2598.55 1 24 346 0 3600
RC1 2 4 2845.2 2833.72 3 3600 - - - - - 3600
RC1 2 5 3325.6 3319.34 9 3600 3170.65 1 164 2262 0 3600
RC1 2 6 3300.7 3300.7 3 1028 3160.23 1 184 2637 0 3600
RC1 2 7 3177.8 3154.8 5 3600 3002.4 1 113 1915 0 3600
RC1 2 8 3060 3049.85 5 3600 2881.99 1 70 1395 0 3600
RC1 2 9 3073.3 3041.67 7 3600 2863.9 1 72 1443 0 3600
RC1 4 1 8522.9 8481.66 5 3600 8193.9 1 113 1646 0 3600
RC1 4 10 7581.2 7511.6 1 3600 6142.39 1 6 98 0 3600
RC1 4 2 7878.2 7843.85 1 3600 6800.16 1 14 389 0 3600
RC1 4 3 7516.9 7454.57 1 3600 - - - - - 3600
RC1 4 4 7292.9 7206.25 1 3600 - - - - - 3600
RC1 4 5 8152.3 8101.4 1 3600 7567.36 1 45 1575 0 3600
RC1 4 6 8148 8092.64 1 3600 7554.08 1 47 1644 0 3600
RC1 4 7 7932.5 7884.28 1 3600 7192.01 1 29 1036 0 3600
RC1 4 8 7757.2 7687.88 1 3600 6652.32 1 12 586 0 3600
RC1 4 9 7717.7 7641.23 5 3600 6587.73 1 12 574 0 3600
RC1 6 1 16960.1 16846.82 1 3600 15997.1 1 43 1283 0 3600
RC1 6 10 15651.3 15455.46 1 3600 - - - - - 3600
RC1 6 2 15890.6 15715.75 1 3600 - - - - - 3600
RC1 6 3 15181.3 14922.33 1 3600 - - - - - 3600
RC1 6 4 14753.2 14405.48 1 3600 - - - - - 3600
RC1 6 5 16536.3 16377.64 1 3600 14277.6 1 14 920 0 3600
RC1 6 6 16473.3 16315.89 1 3600 14316.6 1 16 938 0 3600
RC1 6 7 16055.3 15929.19 3 3600 13377.0 1 10 422 0 3600

Table K.1: Continued.
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Instance VRPSolver Column Elimination
Name UB LB Nodes Time (s) LB CEIt CESIt CR Cuts Time (s)
RC1 6 8 15891.8 15689.09 1 3600 - - - - - 3600
RC1 6 9 15803.5 15611.36 1 3600 - - - - - 3600
RC1 8 1 29978.9 29723.6 1 3600 27854.3 1 25 1162 0 3600
RC1 8 10 28168.5 27725.26 1 3600 - - - - - 3600
RC1 8 2 28290.1 27880.5 1 3600 - - - - - 3600
RC1 8 5 29219.9 28903.94 5 3600 25291.2 1 12 478 0 3600
RC1 8 6 29194.2 28795.58 5 3600 23585.7 1 4 109 0 3600
RC1 8 7 28788.6 28400.17 3 3600 - - - - - 3600
RC1 8 8 28418.1 28007.4 1 3600 - - - - - 3600
RC1 8 9 28347.1 27992.74 1 3600 - - - - - 3600
RC2 2 1 2797.4 2797.4 1 196 2069.59 1 320 1480 0 3600
RC2 2 10 1989.2 1954.78 1 3600 931.879 1 109 189 0 3600
RC2 2 2 2481.6 2481.6 3 1808 835.921 1 52 79 0 3600
RC2 2 4 1854.8 1839.25 1 3600 - - - - - 3600
RC2 2 5 2491.4 2491.4 1 684 1473.23 1 171 606 0 3600
RC2 2 6 2495.1 2495.1 1 713 1457.69 1 195 700 0 3600
RC2 2 7 2287.7 2284.42 5 3600 1218.47 1 143 421 0 3600
RC2 2 8 2151.2 2151.2 1 2476 1092.23 1 134 279 0 3600
RC2 2 9 2086.6 2059.93 1 3600 1121.09 1 149 239 0 3600
RC2 4 1 6147.3 6141.13 1 3600 3494.73 1 109 613 0 3600
RC2 4 2 5407.5 5328.56 1 3600 - - - - - 3600
RC2 4 5 5392.3 5369.86 1 3600 2234.53 1 51 178 0 3600
RC2 4 6 5324.6 5253.47 1 3600 2184.43 1 48 196 0 3600
RC2 4 7 4987.8 4848.73 1 3600 - - - - - 3600
RC2 4 8 4693.3 4126.88 1 3600 - - - - - 3600
RC2 4 9 4510.4 2898.74 1 3600 - - - - - 3600
RC2 6 1 11966.1 - - 3600 4444.29 1 31 218 0 3600

Table K.1: Continued.
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Appendix L

Multicoloring Results

Table L.1: A comparison of the performance of the branch-and-price algorithm created by Gualandi
and Malucelli (2012) and that of column elimination for solving the COG instances created in
Gualandi and Malucelli (2012).

Instance GM Column Elimination
Name n m ω LB UB Time (s) LB UB CEIt CR Time (s)
COG-10teams 3200 124480 73 - - 3600 71 1600 25 3713 3373
COG-air04 17808 2121648 377 377 377 1.8 377 377 2 0 6
COG-air05 14390 2527253 413 - - 3600 1 5295 0 0 2117
COG-atlanta-ip 8124 9250 15 15 15 1844 15 15 2 17 1
COG-cap6000 11992 12103 14 14 14 304 14 14 2 0 1
COG-ds 15252 2057486 1 500 500 6.5 - - - - 3600
COG-gesa2-o 192 144 12 12 13 3600 12 12 2 0 0
COG-misc07 410 2928 36 36 39 3600 36 36 141 581 139
COG-mkc 10394 154870 169 169 169 0.1 169 169 2 0 1
COG-mod011 192 336 12 12 13 3600 12 13 61 2395 3266
COG-mzzv11 19942 257012 101 101 101 0.1 101 101 2 0 5
COG-mzzv42z 18806 225687 91 91 91 0.1 91 91 2 0 4
COG-net12 3202 4835 17 17 17 1301 17 17 2 17 0
COG-nsrand-ipx 13240 69510 30 - - 3600 30 30 2 0 5
COG-opt1217 1536 6528 26 - - 3600 26 26 2 0 13
COG-rd-rplusc-21 904 11785 109 109 109 0 109 109 2 0 0
COG-rout 560 2940 30 30 32 3600 30 30 2 0 0
COG-swath 12480 958000 317 - - 3600 - - - - 3600
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Appendix M

PDPTW Results

Table M.1: Comparing the performance of the dual ascent method from Baldacci et al. (2011a) and
column elimination for solving some PDPTW instances by Li and Lim (2001) with 200 locations.

Instance BBM VRPSolver Column Elimination
Name UB LB UB Time (s) LB Time (s) LB CEIt CESIt CR Time (s)
LC1 2 1 2704.6 2704.6 2704.6 3.3 - 3600 2704.57 10 1 7 3600
LC1 2 10 2741.6 2741.6 2741.6 137.1 - 3600 2389.82 1 324 6034 3600
LC1 2 2 2764.6 2764.6 2764.6 21.5 - 3600 2757.11 74 126 2608 3600
LC1 2 3 2772.2 2772.2 2772.2 114.9 - 3600 2499.26 1 124 2080 3600
LC1 2 4 2661.4 2395.8 2661.4 454.2 - 3600 - - - - 3600
LC1 2 5 2702.0 2702.0 2702.0 4.8 - 3600 2702.05 10 13 176 130
LC1 2 6 2701.0 2701.0 2701.0 7.4 - 3600 2701.04 10 24 337 129
LC1 2 7 2701.0 2701.0 2701.0 7.7 - 3600 2701.04 9 23 311 130
LC1 2 8 2689.8 2689.8 2689.8 16.0 - 3600 2673.18 5 1053 6399 3600
LC1 2 9 2724.2 2724.2 2724.2 55.3 - 3600 2606.42 1 638 11183 3600
LR1 2 1 4819.1 4819.1 4819.1 1.6 - 3600 4819.12 18 1 416 75
LR1 2 10 3386.3 3386.3 3386.3 1376.7 - 3600 2614.42 1 342 3346 3600
LR1 2 2 4093.1 4093.1 4093.1 20.6 - 3600 3868.42 1 176 2011 3600
LR1 2 3 3486.8 3486.8 3486.8 3690.8 - 3600 - - - - 3600
LR1 2 4 2830.7 2341.8 2830.7 1809.6 - 3600 - - - - 3600
LR1 2 5 4221.6 4221.6 4221.6 2.6 - 3600 4170.29 6 1309 8835 3600
LR1 2 6 3763.0 3763.0 3763.0 180.9 - 3600 3256.39 1 250 3008 3600
LR1 2 7 3112.9 2761.8 3112.9 1320.4 - 3600 - - - - 3600
LR1 2 8 2645.5 2150.8 2645.5 566.9 - 3600 - - - - 3600
LR1 2 9 3953.5 3953.3 3953.5 15.4 - 3600 3590.42 1 789 9524 3600
LRC1 2 1 3606.1 3606.1 3606.1 3.1 - 3600 3530.91 3 1711 12737 3600
LRC1 2 10 2837.5 2335.5 2837.5 217.4 - 3600 2146.89 1 379 4560 3600
LRC1 2 2 3292.4 3292.4 3292.4 322.3 - 3600 2778.25 1 226 3014 3600
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Instance BBM VRPSolver Column Elimination
Name UB LB UB Time (s) LB Time (s) LB CEIt CESIt CR Time (s)
LRC1 2 3 3079.5 2497.8 3079.5 304.3 - 3600 - - - - 3600
LRC1 2 4 2525.8 1981.0 2525.8 188.2 - 3600 - - - - 3600
LRC1 2 5 3715.8 3715.8 3715.8 42.1 - 3600 3021.66 1 994 13568 3600
LRC1 2 6 3360.9 3360.9 3360.9 7.0 - 3600 2750.99 1 183 2169 3600
LRC1 2 7 3317.7 3317.7 3317.7 408.2 - 3600 2658.79 1 861 10800 3600
LRC1 2 8 3086.5 3086.5 3086.5 1562.7 - 3600 2339.36 1 611 7051 3600
LRC1 2 9 3053.8 3053.8 3053.8 1757.2 - 3600 2340.17 1 556 6441 3600

Table M.1: Continued.

Table M.2: Comparing the performance of the dual ascent method from Baldacci et al. (2011a) and
column elimination for solving some PDPTW instances by Li and Lim (2001) with 1000 locations.

Instance BBM VRPSolver Column Elimination
Name UB LB UB Time (s) LB Time (s) LB CEIt CESIt CR Time (s)
LC1 10 1 42488.66 42488.7 42488.7 79.5 - 3600 42432.6 2 257 2946 3600
LC1 10 5 42477.4 42477.4 42477.4 118.7 - 3600 39046.4 1 28 2561 3600
LR1 10 1 56744.91 56744.9 56744.9 233.1 - 3600 36732.4 1 9 613 3600
LR1 10 5 59053.68 52536.3 52901.3 4068.8 - 3600 41026.9 1 77 4069 3600
LRC1 10 1 49111.78 48398.8 48666.5 2533.3 - 3600 31414.6 1 37 2895 3600
LRC1 10 5 50323.04 38177.8 49287.1 1650.3 - 3600 - - - - 3600

Table M.3: The performance of column elimination for solving PDPTW instances by Li and Lim
(2001) that have not yet been reported on by an exact solver.

Instance Column Elimination
Name UB LB CEIt CESIt CR Time (s)
LC1 4 1 7152.06 7152.06 8 15 217 50
LC1 4 2 8007.79 4980.79 1 4 433 3600
LC1 4 5 7150.0 7150.0 9 32 609 477
LC1 4 6 7154.02 7154.02 19 73 1867 3295
LC1 4 7 7149.43 7119.88 3 120 2573 3600
LC1 4 8 8305.42 6941.46 1 293 8755 3600
LC1 4 9 7451.2 5529.08 1 19 1149 3600
LC1 6 1 14095.64 14095.6 8 56 741 3600
LC1 6 5 14086.3 14086.3 8 91 2140 1620
LC1 6 6 14090.79 14002.8 1 168 4464 3600
LC1 6 7 14083.76 13443.7 1 44 2197 3600
LC2 2 1 1931.44 1931.44 37 54 494 300
LC2 2 10 1817.45 1697.61 1 496 3168 3600
LC2 2 2 1881.4 1839.51 1 231 1415 3600
LC2 2 3 1844.33 1605.18 1 90 458 3600
LC2 2 4 1767.12 1320.68 1 46 118 3600
LC2 2 5 1891.21 1852.14 5 389 2845 3600
LC2 2 6 1857.78 1794.7 2 854 6119 3600
LC2 2 7 1850.13 1804.02 1 711 4738 3600
LC2 2 8 1824.34 1740.64 1 551 3798 3600
LC2 2 9 1854.21 1744.24 1 527 3682 3600
LC2 4 1 4116.33 4116.33 12 113 1123 1555
LC2 4 10 3828.44 3302.42 1 83 809 3600
LC2 4 2 4144.29 3800.05 1 104 1109 3600
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Instance Column Elimination
Name UB LB CEIt CESIt CR Time (s)
LC2 4 5 4030.63 3832.91 1 294 3675 3600
LC2 4 6 3900.29 3637.58 1 157 1858 3600
LC2 4 7 3962.51 3566.45 1 110 1189 3600
LC2 4 8 3844.45 3507.99 1 133 1571 3600
LC2 4 9 4188.93 3337.95 1 66 628 3600
LC2 6 1 7977.98 7741.69 1 189 2328 3600
LC2 6 10 7946.6 5481.81 1 28 278 3600
LC2 6 2 9900.48 6848.34 1 52 543 3600
LC2 6 5 9051.53 7226.97 1 183 3316 3600
LC2 6 6 8775.55 6832.82 1 81 1368 3600
LC2 6 7 9376.58 6266.68 1 37 391 3600
LC2 6 8 7579.63 6516.17 1 64 919 3600
LC2 6 9 8714.22 6173.42 1 41 488 3600
LR1 4 1 10639.75 10588.1 3 859 8357 3600
LR1 4 10 8192.65 4713.16 1 32 1336 3600
LR1 4 5 11374.06 8951.35 1 469 8829 3600
LR1 4 9 9859.47 7249.08 1 203 4032 3600
LR1 6 1 22821.65 21653.7 1 289 8766 3600
LR1 6 5 23623.52 17492.2 1 192 6161 3600
LR1 6 9 21835.87 13748.3 1 70 2195 3600
LR2 2 1 4073.1 3219.89 1 173 858 3600
LR2 2 10 3254.83 1602.35 1 62 55 3600
LR2 2 2 3796.0 1026.3 1 35 16 3600
LR2 2 5 3438.39 2179.08 1 93 209 3600
LR2 2 6 4457.95 1039.18 1 24 4 3600
LR2 2 9 3922.11 1912.56 1 84 110 3600
LR2 4 1 9726.88 5366.15 1 72 212 3600

Table M.3: Continued.
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Instance Column Elimination
Name UB LB CEIt CESIt CR Time (s)
LR2 4 5 9894.46 2878.01 1 28 12 3600
LR2 4 9 7926.07 2536.86 1 26 30 3600
LR2 6 1 21759.33 7190.63 1 26 1 3600
LRC1 4 1 9124.52 7711.6 1 213 4997 3600
LRC1 4 10 7064.36 3579.29 1 8 1189 3600
LRC1 4 5 8847.4 6647.12 1 347 8422 3600
LRC1 4 6 8394.47 6391.08 1 351 8586 3600
LRC1 4 7 8037.87 5685.65 1 214 5303 3600
LRC1 4 8 7930.15 4882.51 1 111 3017 3600
LRC1 4 9 8004.24 4876.15 1 104 2846 3600
LRC1 6 1 18288.9 14261.5 1 149 5428 3600
LRC2 2 1 3595.18 2021.66 1 257 1219 3600
LRC2 2 2 3158.25 803.983 1 44 37 3600
LRC2 2 5 2776.93 1461.8 1 157 482 3600
LRC2 2 6 2707.96 1380.48 1 171 527 3600
LRC2 2 7 3010.68 1250.51 1 138 338 3600
LRC2 2 8 2399.89 1151.38 1 142 254 3600
LRC2 2 9 2208.49 1197.57 1 148 231 3600
LRC2 4 1 9738.95 3489.16 1 108 575 3600
LRC2 4 5 7309.54 2246.14 1 48 107 3600
LRC2 4 6 6337.08 1851.51 1 21 24 3600
LRC2 4 7 6292.23 1863.73 1 36 49 3600

Table M.3: Continued.
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